Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38988275

RESUMO

Antireflective coatings with superhydrophobicity have many outdoor applications, such as solar photovoltaic panels and windshields. In this study, we fabricated an omnidirectional antireflective and superhydrophobic coating with good mechanical robustness and environmental durability via the spin coating technique. The coating consisted of a layer of phytic acid (PA)/polyacrylamide (PAM)/calcium ions (Ca2+) (referred to as Binder), an antireflective layer composed of chitin nanofibers (ChNFs), and a hydrophobic layer composed of methylsilanized silica (referred to as Mosil). The transmittance of a glass slide with the Binder/ChNFs/Mosil coating had a 5.2% gain at a wavelength of 550 nm, and the antireflective coating showed a water contact angle as high as 160° and a water sliding angle of 8°. The mechanical robustness and environmental durability of the coating, including resistance to peeling, dynamic impact, chemical erosion, ultraviolet (UV) irradiation, and high temperature, were evaluated. The coating retained excellent antireflective capacity and self-cleaning performance in the harsh conditions. The increase in voltage per unit area of a solar panel with a Binder/ChNFs/Mosil coating reached 0.4 mV/cm2 compared to the solar panel exposed to sunlight with an intensity of 54.3 × 103 lx. This work not only demonstrates that ChNFs can be used as raw materials to fabricate antireflective superhydrophobic coatings for outdoor applications but also provides a feasible and efficient approach to do so.

2.
Int J Biol Macromol ; 274(Pt 1): 133337, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908624

RESUMO

Chitin nanofibers are widely used in many fields because of their biocompatibility, renewability and excellent mechanical properties. Herein, zwitterionically charged chitin nanofibers (ZC-ChNFs) were prepared from chitin via one step chemical modification (oxalic acid pretreatment) and subsequent ultrasound treatment. Effects of pretreatment time on size of the ZC-ChNFs and pH of ZC-ChNF suspensions on the thickness, porosity, refractive index and antireflective capacity of ZC-ChNF coatings were investigated. It was found that, by adjusting pH of the ZC-ChNF suspension, porosity and refractive index of the ZC-ChNF coatings could be controlled. The ZC-ChNF coatings fabricated with smaller ZC-ChNFs had higher antireflective performance and the transmittance gain of a glass with a ZC-ChNF coating was about 3.5 % at a wavelength of 550 nm compared to the bare glass. The results of this work provide a promising pathway to fabricate antireflective coating with ZC-ChNFs just by controlling the pH of ZC-ChNF suspensions.

3.
Food Res Int ; 174(Pt 1): 113511, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986419

RESUMO

Spray drying has been widely applied in food industry due to its efficiency and low cost. Exploring feasibility to prepare resistant starch (RS) via spray drying could open up new route to produce starch-based products with low glycemic index efficiently. In this study, effects of spray drying operating conditions on the structure and digestibility of recrystallized spray-dried corn starch (RSDCS) were explored. Apparent amylose content (AAC) and swelling power (SP) of the RSDCSs increased after the spray drying and recrystallization. Particle size of the RSDCSs decreased significantly with increase of compressed air flow and decrease of starch suspension concentration. Furthermore, the short-range order, long-range order, and content of RS in the RSDCSs decreased with increase of compressed air flow and starch suspension concentration. The Pearson's correlation analysis showed that digestive properties of the RSDCSs were mainly related to the short-range ordered structure and crystalline structure. Moreover, Mantel analysis revealed that operating conditions changed the digestibility of the RSDCSs through impacting crystalline structure, AAC and SP. The highest content of RS in the RSDCSs (23.08%) was increased near 2.6 times comparing to that of native corn starch (9.02%).


Assuntos
Amido , Zea mays , Amido/química , Zea mays/química , Amilose/análise , Digestão , Índice Glicêmico
4.
J Colloid Interface Sci ; 650(Pt A): 676-685, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441961

RESUMO

Antireflective coatings play an important role in various optical devices. Herein, we developed omnidirectional antireflective coatings fabricated with charged chitin nanofibers (ChNFs) through layer-by-layer (LbL) self-assembly technology. The charged ChNFs were prepared from chitin with modifications of esterification (negatively charged) and esterification followed partial deacetylation (positively charged), respectively, through ultrasonic treatment. The effects of concentration of the ChNF suspensions and number of bilayers on thickness, refractive index and antireflective capacity of the ChNF coatings were investigated. Refractive index of the ChNF coatings can be manipulated by changing concentration of the ChNF suspensions. Thickness of the ChNF coatings depends on number of bilayers and concentration of the ChNF suspensions. The ChNF coating on a glass substrate with 5 bilayers fabricated using the suspensions with concentration 0.1% had a refractive index of 1.36 and yielded 4% gain in transmittance compared to the glass at the wavelength of 550 nm. This work demonstrates that charged ChNFs are promising building blocks to fabricate antireflective coatings on large size substrates with high efficiency and low cost through LbL self-assembly.

5.
Carbohydr Polym ; 269: 118337, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294347

RESUMO

A series of cationic starches with different degrees of substitution were synthesized by etherification of potato starch with 3-chloro-2-hydroxypropyl trimethylammonium chloride (CTA). Cationic starch nanoparticles (CTA-StNPs) with different sizes were prepared by precipitation. Flocculation behaviors of the CTA-StNPs in simulated water sample containing kaolin were studied. The results showed that the dosage required to bring the simulated water sample containing kaolin to attain maximum transmittance at pH = 4 was significantly less than that at pH = 7. Both the size and degree of substitution of the CTA-StNPs affected their flocculation performance. The smaller the size and the higher the degree of substitution of CTA-StNPs, the better was the flocculation performance. Charge neutralization played a leading role in the flocculation process. The adsorption process of the CTA-StNPs onto kaolin could be divided into rapid adsorption, stable adsorption and equilibrium adsorption and followed pseudo second-order kinetic equation very well (R2 > 0.99).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA