Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116852, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834007

RESUMO

The incidence of breast cancer is increasing annually, making it a major health threat for women. Chemoprevention using natural, dietary, or synthetic products has emerged as a promising approach to address this growing burden. Atractylenolide-III (AT-III), a sesquiterpenoid present in various medicinal herbs, has demonstrated potential therapeutic effects against several diseases, including tumors, nonalcoholic fatty liver disease, and cerebral ischemic injury. However, its impact on breast cancer chemoprevention remains unexplored. In this study, we used an N-methyl-N-nitrosourea (NMU)-induced rat breast cancer model and 17ß-estradiol (E2)-treated MCF-10A cells to evaluate the chemopreventive potential of AT-III on mammary tumorigenesis. AT-III inhibited mammary tumor progression, evidenced by reduced tumor volume and multiplicity, prolonged tumor latency, and the reversal of NMU-induced weight loss. Furthermore, AT-III suppressed NMU-induced inflammation and oxidative stress through the Nrf2/ARE pathway in breast cancer tissues. In vitro, AT-III effectively suppressed E2-induced anchorage-independent growth and cell migration in MCF-10A cells. Nrf2 knockdown attenuated the protective effects of AT-III, highlighting the pivotal role of Nrf2 in AT-III-mediated suppression of tumorigenesis. The mechanism involves the induction of Nrf2 expression by AT-III through the autophagic degradation of Kelch-like ECH-associated protein 1 (Keap1). Overall, the results of this study indicate that AT-III is a promising candidate for breast cancer chemoprevention and provide valuable insights into its molecular interactions and signaling pathways.


Assuntos
Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch , Lactonas , Fator 2 Relacionado a NF-E2 , Sesquiterpenos , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Sesquiterpenos/farmacologia , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lactonas/farmacologia , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ratos , Humanos , Linhagem Celular Tumoral , Ratos Sprague-Dawley , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/prevenção & controle , Neoplasias Mamárias Experimentais/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Metilnitrosoureia/toxicidade , Carcinogênese/efeitos dos fármacos , Anticarcinógenos/farmacologia , Estradiol/farmacologia
2.
Cell Death Dis ; 15(5): 312, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697964

RESUMO

Cancer immunotherapy has rapidly transformed cancer treatment, yet resistance remains a significant hurdle, limiting its efficacy in many patients. Circular RNAs (circRNAs), a novel class of non-coding RNAs, have emerged as pivotal regulators of gene expression and cellular processes. Increasing evidence indicates their involvement in modulating resistance to cancer immunotherapy. Notably, certain circRNAs function as miRNA sponges or interact with proteins, influencing the expression of immune-related genes, including crucial immune checkpoint molecules. This, in turn, shapes the tumor microenvironment and significantly impacts the response to immunotherapy. In this comprehensive review, we explore the evolving role of circRNAs in orchestrating resistance to cancer immunotherapy, with a specific focus on their mechanisms in influencing immune checkpoint gene expression. Additionally, we underscore the potential of circRNAs as promising therapeutic targets to augment the effectiveness of cancer immunotherapy. Understanding the role of circRNAs in cancer immunotherapy resistance could contribute to the development of new therapeutic strategies to overcome resistance and improve patient outcomes.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Neoplasias , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/imunologia , Resistencia a Medicamentos Antineoplásicos/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Animais
3.
Cell Mol Biol Lett ; 29(1): 60, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671354

RESUMO

Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos , Neoplasias , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Autofagia/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Transdução de Sinais/genética , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
4.
Am J Chin Med ; 51(8): 2243-2262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903716

RESUMO

Radiotherapy plays a crucial role in the multimodal treatment of breast cancer. However, radioresistance poses a significant challenge to its effectiveness, hindering successful cancer therapy. Emerging evidence indicates that Nrf2 and HIF-1[Formula: see text] are critical regulators of cellular anti-oxidant responses and that their overexpression significantly promotes radioresistance. Wogonin (WG), the primary component isolated from Scutellaria baicalensis, exhibits potential antitumor and reversal of multidrug resistance activities. Nevertheless, the role of WG in radioresistance remains unclear. This study aims to explore the effects of WG on the radioresistance of breast cancer. Our results indicate that Nrf2 and HIF-1[Formula: see text] overexpression was observed in breast cancer tissues and was correlated with the histological grading of the disease. Radiation further increased the levels of Nrf2 and HIF-1[Formula: see text] in breast cancer cells. However, WG demonstrated the ability to induce cell apoptosis and reverse radioresistance by inhibiting the Nrf2/HIF-1[Formula: see text] pathway. These effects were also confirmed in xenograft mice models. Mechanistically, WG enhanced the level of the Nrf2 inhibitor Keap1 through reducing CpG methylation in the promoter region of the Keap1 gene. Consequently, the Nrf2/HIF-1[Formula: see text] pathway, along with the Nrf2- and HIF-1[Formula: see text]-dependent protective responses, were suppressed. Taken together, our findings demonstrate that WG can epigenetically regulate the Keap1 gene, inhibit the Nrf2/HIF-1[Formula: see text] pathway, induce apoptosis in breast cancer cells, and diminish acquired radioresistance. This study offers potential strategies to overcome the limitations of current radiotherapy for breast cancer.


Assuntos
Neoplasias da Mama , Flavanonas , Humanos , Camundongos , Animais , Feminino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Flavanonas/farmacologia
5.
Front Mol Biosci ; 9: 1017036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200070

RESUMO

Background: Accumulating evidence suggests that circular RNAs (circRNAs) are highly correlated with tumor progression and pathogenesis in breast cancer. Whereas, their regulatory roles and corresponding mechanisms in breast cancer are still not exhaustive. Thus, we intended to establish circRNA-mediated competive endogenous RNA (ceRNA) network to uncover the possible roles and clinical implications of circRNAs in breast cancer. Methods: Microarray and RNA-sequencing (RNA-seq) data were download from GEO and TCGA database to screen for differentially expressed RNAs (DEcircRNAs, DEmiRNAs, DEmRNAs) in breast cancer. By implementing online databases, we established ceRNA networks, performed gene set enrichment analysis, constructed protein-protein interaction (PPI) networks, and assessed the expression levels and prognostic significance of hub genes. Subsequently, we explored the functions of prognosis-related genes and constructed gene-drug interaction networks. Finally, the functional roles of DEcircRNAs in breast cancer were revealed via MTT and colony formation assay. Results: Based on the identified 8 DEcircRNAs, 25 miRNAs and 216 mRNAs, a ceRNA regulatory network was established. Further analysis revealed that prominent enrichments were transcription factor binding, transforming growth factor-beta (TGF-ß) and Apelin signaling pathway etc. PPI network and survival curves analysis showed that elevated levels of hub genes (RACGAP1 and KPNA2) were associated with poorer prognosis. They were found to be positively relevant to cell cycle and proliferation. Then a prognostic sub-network of ceRNA was constructed, consisting of 2 circRNAs, 4 miRNAs and 2 mRNAs. The gene-drug interaction network showed that numerous drugs could regulate the expression of these two prognosis-related genes. Functional experiments showed that depletion of circ_0008812 and circ_0001583 could significantly inhibit the proliferation of MCF-7 cells. Conclusion: Our study constructed 4 prognostic regulatory axes that are significantly correlated with tumor prognosis in breast cancer patients, and uncover the roles of circ_0008812 and circ_0001583 in breast cancer, providing a new perspective into the molecular mechanisms of breast cancer pathogenesis.

6.
Mol Cancer ; 21(1): 148, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35843942

RESUMO

The resistance of tumor cells to therapy severely impairs the efficacy of treatment, leading to recurrence and metastasis of various cancers. Clarifying the underlying mechanisms of therapeutic resistance may provide new strategies for overcoming cancer resistance. N6-methyladenosine (m6A) is the most prevalent RNA modification in eukaryotes, and is involved in the regulation of RNA splicing, translation, transport, degradation, stability and processing, thus affecting several physiological processes and cancer progression. As a novel type of multifunctional non-coding RNAs (ncRNAs), circular RNAs (circRNAs) have been demonstrated to play vital roles in anticancer therapy. Currently, accumulating studies have revealed the mutual regulation of m6A modification and circRNAs, and their interaction can further influence the sensitivity of cancer treatment. In this review, we mainly summarized the recent advances of m6A modification and circRNAs in the modulation of cancer therapeutic resistance, as well as their interplay and potential mechanisms, providing promising insights and future directions in reversal of therapeutic resistance in cancer.


Assuntos
Neoplasias , RNA Circular , Adenosina/análogos & derivados , Adenosina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Metilação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , RNA Circular/genética
7.
Food Funct ; 13(8): 4273-4285, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35373233

RESUMO

Breast cancer accounts for 11.7% of all newly diagnosed cancer cases and has become the leading cause of cancer worldwide. Currently, more effective and less toxic chemopreventive strategies for breast cancer are urgently needed. Notably, naturally occurring dietary phytochemical compounds, such as curcumin and resveratrol, are generally considered to be the most promising breast cancer preventive agents. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a key regulatory role in the expression of multiple antioxidant and anti-inflammatory enzymes, which can effectively suppress the excessive accumulation of carcinogens and their metabolites. Therefore, modulation of Nrf2 by dietary phytochemicals appears to be a promising approach for breast cancer prevention, which further removes excessive carcinogenic metabolites by inducing Phase II cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1). In this review, we summarize recently published findings on the prevention of breast cancer with potential natural phytochemical compounds targeting Nrf2, as well as a mechanistic discussion of Nrf2 activation and its contribution in inhibiting breast cancer carcinogenesis. The epigenetic regulation of Nrf2 by phytochemicals is also explored.


Assuntos
Neoplasias da Mama , Fator 2 Relacionado a NF-E2 , Feminino , Humanos , Neoplasias da Mama/prevenção & controle , Carcinogênese , Quimioprevenção , Epigênese Genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais
8.
Oxid Med Cell Longev ; 2022: 7848811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368867

RESUMO

Nowadays, cancer has become the second leading cause of death worldwide. Radiotherapy (RT) is the mainstay in management of carcinoma; however, overcoming radioresistance remains a great challenge to successfully treat cancer. Nrf2 is a key transcription factor that is responsible for maintaining cellular redox homeostasis. Activation of Nrf2 signaling pathway could upregulate multifarious antioxidant and detoxifying enzymes, further scavenging excessive reactive oxygen species (ROS). Despite its cytoprotective roles in normal cells, it could also alleviate oxidative stress and DNA damage caused by RT in cancer cells, thus promoting cancer cell survival. Accumulating evidence indicates that overactivation of Nrf2 is associated with radioresistance; therefore, targeting Nrf2 is a promising strategy to enhance radiosensitivity. Dietary phytochemicals coming from natural products are characterized by low cost, low toxicity, and general availability. Numerous phytochemicals are reported to regulate Nrf2 and intensify the killing capability of RT through diverse mechanisms, including promoting oxidative stress, proapoptosis, and proautophagy as well as inhibiting Nrf2-mediated cytoprotective genes expression. This review summarizes recent advances in radiosensitizing effects of dietary phytochemicals by targeting Nrf2 and discusses the underlying mechanisms, including N6-methyladenosine (m6A) modification of Nrf2 mediated by phytochemicals in cancer.


Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Compostos Fitoquímicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/radioterapia , Fator 2 Relacionado a NF-E2/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Tolerância a Radiação
9.
Fitoterapia ; 109: 52-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704993

RESUMO

Migraine is a highly prevalent neurovascular disorder in the brain. An optimal therapy for migraine has not yet been developed. Gastrodin (Gas), the main effective constitute from Gastrodiae Rhizoma (Tianma in Chinese), has been indicated for migraine treatment and prophylaxis more than 30 years, with demonstrated safety. However, Gas is a phenolic glycoside, with relatively low concentrations and weak efficacy in the central nervous system. To develop more effective anti-migraine agents, we synthesized a novel Gas derivative (Gas-D). In the present study, comparative pharmacodynamic evaluations of Gas and Gas-D were performed in a model of nitroglycerin (NTG)-induced migraine in rats and the hot-plate test in mice. Following behavioral testing in this migraine model, external jugular vein blood and the trigeminal nucleus caudalis (TNC) were collected to analyze plasma nitric oxide (NO) and calcitonin gene-related peptide (CGRP) concentrations and c-Fos expression in the TNC. The acute oral toxicity of Gas and Gas-D was also examined. We found that Gas-D had potent anti-migraine effects, likely attributable to inhibition of both trigeminal nerve activation at central sites and the peripheral release of CGRP following NO scavenging. Additionally, Gas-D exerted significant anti-nociceptive effect in response to thermal pain compared with Gas. Furthermore, a single dose of 2.048 g/kg Gas or Gas-D presented no acute oral toxicity in mice. Altogether, the potent anti-migraine and anti-hyperalgesic effects of Gas-D suggest that it might be a potentially novel drug candidate for migraine treatment or prophylaxis.


Assuntos
Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Transtornos de Enxaqueca/tratamento farmacológico , Dor/tratamento farmacológico , Núcleos do Trigêmeo/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Álcoois Benzílicos/síntese química , Peptídeo Relacionado com Gene de Calcitonina/sangue , Feminino , Glucosídeos/síntese química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transtornos de Enxaqueca/induzido quimicamente , Estrutura Molecular , Óxido Nítrico/sangue , Nitroglicerina/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
10.
Aging Clin Exp Res ; 28(1): 69-76, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25986237

RESUMO

BACKGROUND AND AIMS: The predominant distribution of the antiaging Klotho protein in both the kidneys and brain may point to its essential role in protecting against dysfunction of the kidney-brain axis during the aging process. Our previous study showed that the downregulation of Klotho was involved in aging-related cognitive impairment in aged senescence-accelerated mouse prone-8 (SAMP8) mice. The present study investigated the potential role of Klotho in aging-associated inflammation and renal injury. METHODS: Age- and gender-matched groups of SAMP8 mice and their corresponding normal control senescence-accelerated mouse resistant-1 (SAMR1) were used to investigate the potential role of Klotho in aging-associated inflammation and renal injury. RESULTS: Compared with aged SAMR1 controls, early-stage chronic kidney disease (CKD), which is associated with an increase in the urinary albumin-to-creatinine ratio, inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis, was observed in aged SAMP8 mice. Furthermore, the aging-related loss of Klotho-induced activation of the retinoic acid-inducible gene 1/nuclear factor-κB (RIG-I/NF-κB) signaling pathway and subsequent production of the proinflammatory mediators tumor necrosis factor α, interleukin-6, and inducible nitric oxide synthase in the kidneys of aged SAMP8 mice compared with SAMR1 controls. CONCLUSIONS: The present results suggest that aging-related inflammation and the development of early-stage CKD are likely associated with the downregulation of Klotho and induction of the RIG-I/NF-κB signaling pathway in 12-month-old SAMP8 mice. Moreover, aged SAMP8 mice with cognitive deficits and renal damage may be a potential mouse model for investigating the kidney-brain axis in the aging process.


Assuntos
Envelhecimento/metabolismo , RNA Helicases DEAD-box/metabolismo , Glucuronidase/metabolismo , Inflamação , Subunidade p50 de NF-kappa B/metabolismo , Insuficiência Renal , Animais , Proteína DEAD-box 58 , Regulação para Baixo , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Proteínas Klotho , Masculino , Camundongos , Insuficiência Renal/etiologia , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...