Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
2.
Sci Rep ; 14(1): 15398, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965238

RESUMO

METTL3 and METTL14 are traditionally posited to assemble the m6A methyltransferase complex in a stoichiometric 1:1 ratio, modulating mRNA fate via m6A modifications. Nevertheless, recent investigations reveal inconsistent expression levels and prognostic significance of METTL3 and METTL14 across various tumor types, challenging their consistent functional engagement in neoplastic contexts. A pan-cancer analysis leveraging The Cancer Genome Atlas (TCGA) data has identified pronounced disparities in the expression patterns, functional roles, and correlations with tumor burden between METTL3 and METTL14, particularly in esophageal squamous cell carcinoma (ESCC). Knockdown experiments of METTL3 in EC109 cells markedly suppress cell proliferation both in vitro and in vivo, whereas METTL14 knockdown shows a comparatively muted effect on proliferation and does not significantly alter METTL3 protein levels. mRNA sequencing indicates that METTL3 singularly governs the expression of 1615 genes, with only 776 genes co-regulated with METTL14. Additionally, immunofluorescence co-localization studies suggest discrepancies in cellular localization between METTL3 and METTL14. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses demonstrate that METTL3 uniquely associates with the Nop56p-linked pre-rRNA complex and mRNA splicing machinery, independent of METTL14. Preliminary bioinformatics and multi-omics investigations reveal that METTL3's autonomous role in modulating tumor cell proliferation and its involvement in mRNA splicing are potentially pivotal molecular mechanisms. Our study lays both experimental and theoretical groundwork for a deeper understanding of the m6A methyltransferase complex and the development of targeted tumor therapies focusing on METTL3.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Metiltransferases , Metiltransferases/metabolismo , Metiltransferases/genética , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Opt Lett ; 49(13): 3636-3639, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950228

RESUMO

We report a 20-W-level acetylene-filled nested hollow-core anti-resonant fiber (nested HC-ARF) amplified spontaneous emission (ASE) source at 3.1 µm. A 1535 nm hundred-watt wavelength tunable single-frequency fiber laser with a high signal-to-noise ratio and narrow linewidth is built for pumping acetylene molecules. Simultaneously, a homemade 120 µm core diameter eight-tube nested HC-ARF is used as a gas chamber to obtain high pump laser coupling efficiency. The mid-infrared (mid-IR) ASE source output power of 21.8 W is achieved at 3.1 µm through the low-pressure acetylene gas-filled nested HC-ARF, and the slope efficiency is 25.1%. In addition, the ASE source features an excellent beam quality of Mx 2 = 1.16 and My 2 = 1.13. To the best of our knowledge, for the first time, it is a record output power for such mid-infrared ASE sources while maintaining excellent beam quality. This work provides a new way to achieve high-power mid-infrared emission.

4.
ACS Nano ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001858

RESUMO

Polarization plays a paramount role in scaling the optical network capacity. Anisotropic two-dimensional (2D) materials offer opportunities to exploit optical polarization-sensitive responses in various photonic and optoelectronic applications. However, the exploration of optical anisotropy in fiber in-line devices, critical for ultrafast pulse generation and modulation, remains limited. In this study, we present a fiber-integrated device based on a single-crystalline tellurene nanosheet. Benefiting from the chiral-chain crystal lattice and distinct optical dichroism of tellurene, multifunctional optical devices possessing diverse excellent properties can be achieved. By inserting the in-line device into a 1.5 µm fiber laser cavity, we generated both linearly polarized and dual-wavelength mode-locking pulses with a degree of polarization of 98% and exceptional long-term stability. Through a twisted configuration of two tellurene nanosheets, we realized an all-optical switching operation with a fast response. The multifunctional device also serves as a broadband photodetector. Notably, bipolar polarization encoding communication at 1550 nm can be achieved without any external voltage. The device's multifunctionality and stability in ambient environments established a promising prototype for integrating polarization as an additional physical dimension in fiber optical networks, encompassing diverse applications in light generation, modulation, and detection.

5.
Commun Biol ; 7(1): 825, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971878

RESUMO

Convergent evolution is central in the origins of multicellularity. Identifying the basis for convergent multicellular evolution is challenging because of the diverse evolutionary origins and environments involved. Haploid Kluyveromyces lactis populations evolve multicellularity during selection for increased settling in liquid media. Strong genomic and phenotypic convergence is observed between K. lactis and previously selected S. cerevisiae populations under similar selection, despite their >100-million-year divergence. We find K. lactis multicellularity is conferred by mutations in genes ACE2 or AIM44, with ACE2 being predominant. They are a subset of the six genes involved in the S. cerevisiae multicellularity. Both ACE2 and AIM44 regulate cell division, indicating that the genetic convergence is likely due to conserved cellular replication mechanisms. Complex population dynamics involving multiple ACE2/AIM44 genotypes are found in most K. lactis lineages. The results show common ancestry and natural selection shape convergence while chance and contingency determine the degree of divergence.


Assuntos
Kluyveromyces , Kluyveromyces/genética , Kluyveromyces/fisiologia , Saccharomyces cerevisiae/genética , Genoma Fúngico , Mutação , Evolução Molecular , Adaptação Fisiológica/genética , Seleção Genética , Evolução Biológica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Genômica/métodos
6.
J Sci Food Agric ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007163

RESUMO

Inflammatory bowel disease (IBD) is one of the most challenging diseases in the 21st century, and more than 10 million people around the world suffer from IBD. Because of the limitations and adverse effects associated with conventional IBD therapies, there has been increased scientific interest in microbial-derived biomolecules, known as postbiotics. Postbiotics are defined as the preparation of inanimate microorganisms and/or their components that confer a health benefit on the host, comprising inactivated microbial cells, cell fractions, metabolites, etc. Postbiotics have shown potential in enhancing IBD treatment by reducing inflammation, modulating the immune system, stabilizing intestinal flora and maintaining the integrity of intestinal barriers. Consequently, they are considered promising adjunctive therapies for IBD. Recent studies indicate that postbiotics offer distinctive advantages, including spanning clinical (safe origin), technological (easy for storage and transportation) and economic (reduced production costs) dimensions, rendering them suitable for widespread applications in functional food/pharmaceutical. This review offers a comprehensive overview of the definition, classification and applications of postbiotics, with an emphasis on their biological activity in both the prevention and treatment of IBD. © 2024 Society of Chemical Industry.

7.
Hortic Res ; 11(7): uhae152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994447

RESUMO

Magnesium (Mg2+) is a crucial nutrient for the growth and development of Camellia sinensis and is closely related to the quality of tea. However, the underlying mechanisms responding to low-Mg 2+ stress in tea plants remain largely unknown. In this study, photosynthetic parameters, metabolomics, and transcriptomics were utilized to explore the potential effects of low Mg2+ on the growth and metabolism of C. sinensis. Low-Mg2+ treatment increased the ratio of shoot dry weight to root dry weight but decreased the photosynthesis of C. sinensis. Forty and thirty metabolites were impacted by Mg2+ shortage in C. sinensis shoots and roots, respectively. Integrated transcriptome and metabolome analyses revealed the possible reasons for the decreased contents of chlorophyll and catechins and the increased theanine content in C. sinensis roots. Weighted gene co-expression network analysis indicated that the Mg2+ transport system was essential in the regulation of Mg2+ homeostasis in C. sinensis, in which CsMGT5 was identified to be the key regulator according to CsMGT5-overexpressing and complementary assays in Arabidopsis thaliana. Moreover, silencing of CsMGT5 in vivo reduced the content of chlorophyll in C. sinensis shoots. In addition, CsMGT5 might collaborate with ammonium transporters to keep the amino acid content steady, suggesting its potential application for tea quality improvement. All these findings demonstrate the key roles of CsMGTs for Mg2+ homeostasis in C. sinensis, providing a theoretical basis for Mg2+ efficient utilization in plants.

8.
Int J Biol Macromol ; : 133873, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013505

RESUMO

In this study, based on the self-assembly strategy, we fused CipA with carbonyl reductase LXCARS154Y derived from Leifsonia xyli by gene coding, and successfully performed the carrier-free immobilization of LXCARS154Y. The immobilized enzyme was then characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and fourier transform infrared spectroscopy (FTIR). Compared with the free enzyme, the immobilized LXCARS154Y exhibited a 2.3-fold improvement in the catalytic efficiency kcat/km for the synthesis of a chiral pharmaceutical intermediate (R)-3,5-bis(trifluoromethyl)phenyl ethanol ((R)-BTPE) by reducing 3,5-bis(trifluoromethyl)acetophenone (BTAP). Moreover, the immobilized enzyme showed the enhanced stability while maintaining over 61 % relative activity after 18 cycles of batch reaction. Further, when CipA-fused carbonyl reductase was employed for (R)-BTPE production in a continuous flow reaction, almost complete yield (97.0 %) was achieved within 7 h at 2 M (512.3 g/L) of BTAP concentration, with a space-time yield of 1717.1 g·L-1·d-1. Notably, we observed the retention of cofactor NADH by CipA-based enzyme aggregates, resulting in a higher total turnover number (TTN) of 4815 to facilitate this bioreductive process. This research developed a concise strategy for efficient preparation of chiral intermediate with cofactor self-sufficiency via continuous flow biocatalysis, and the relevant mechanism was also explored.

9.
J Leukoc Biol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941443

RESUMO

Itaconate is one of the most studied immunometabolites produced by myeloid cells during inflammatory response. It mediates a wide range of anti-inflammatory and immunoregulatory effects and plays a role in a number of pathological states, including autoimmunity and cancer. Itaconate and its derivatives are considered as potential therapeutic agents for treatment of inflammatory diseases. While immunoregulatory effects of itaconate have been extensively studied in vitro and using knock-out mouse models, less is known about how therapeutic administration of this metabolite regulates inflammatory response in vivo. Here, we investigate the immunoregulatory properties of exogenous administration of itaconate (ITA) and its derivative dimethyl itaconate (DI) in a mouse model of LPS-induced inflammation. The data show that administration of ITA or DI controls systemic production of multiple cytokines, including increased IL-10 production. However, only DI was able to suppress systemic production of IFNγ and IL-1ß. In contrast to in vitro data, administration of ITA or DI in vivo resulted in systemic upregulation of IL-6 in the blood. Electrophilic stress due to ITA or DI was not responsible for IL-6 upregulation. However, inhibition of SDH with dimethyl malonate (DM) also resulted in elevated systemic levels of IL-6 and IL-10. Taken together, our study reports a novel effect of exogenous itaconate and its derivative DI on the production of IL-6 in vivo, with important implications for the development of itaconate-based anti-inflammatory therapies.

10.
Int J Biol Macromol ; : 133395, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38945718

RESUMO

Probiotics offer numerous beneficial functions for human bodies, while the low survival rate under gastric acid and short retention time in the intestine are the major obstacles to their utilization. To address these issues, we designed a novel dual-network hydrogel microsphere that combines gastric acid resistance with enhanced mucoadhesion, aiming for the targeted delivery of probiotics. Thiolated oxidized guar gum (SOGG) was disulfide-linked to form the first network, and sodium alginate (SA) was cross-linked with Ca2+ to form the second network. Under the protection of the interpenetrating dual network microspheres, a much higher viability of Lactobacillus rhamnosus (LGG) (8.73 log CFU/mL) was achieved in simulated gastric fluid, compared to the zero-survival rate of free LGG. Mucoadhesion tests showed that the adhesion rate of SOGG/SA microspheres to the intestinal mucosa was 1.75 times higher than that of thiol-free microspheres. In vivo studies revealed that LGG-loaded microspheres significantly enhanced intestinal barrier function, remodeled the gut microbiome, and alleviated DSS-induced colitis in mice. Overall, SOGG/SA microspheres provide an effective strategy to the challenges of probiotic reduction in the stomach and rapid expulsion from the intestines, enhancing their health benefits.

11.
Materials (Basel) ; 17(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930380

RESUMO

In order to optimize the application effect of induction heating (IH) tundishes, a four-channel IH tundish is taken as the research object. Based on numerical simulation methods, the influence of different relative placement angles of induction heaters and channels on the electromagnetic field, flow field and temperature field of the tundish is investigated. We focus on comparing the magnetic flux density (B) and electromagnetic force (EMF) distribution of the channel. The results show that regardless of the relative placement angle between the heater and the channel, the distribution of B in the central circular cross-section of the channel is eccentric. When the heater rotates around channel 1 towards the bottom of the tundish, the distribution of B in the central circular cross-section of the channel changes from a horizontal eccentricity to a vertical one. Through the analysis of the B contour in the longitudinal section of the channel, the difference in effective magnetic flux density area (ΔAB) between the upper and lower parts of the channel can be obtained, thereby quantitatively analyzing the distribution of B in this section. The distribution pattern of ΔAB is consistent with the distribution pattern of the electromagnetic force in the vertical direction (FZ) of the channel centerline. The ΔAB and FZ of channel 1 gradually increase as the heater rotates downwards, while those of channel 2 reach their maximum value at a rotation angle of 60°. Compared to the conventional placement, when the heater rotation angle is 60°, the outlet flow velocities at channel 1 and channel 2 decrease by 15% and 12%, respectively. However, the outlet temperature at channel 2 increases by 1.96 K, and the molten steel flow at the outlet of channel 1 and channel 2 no longer exhibits significant downward flow. This shows that when the heater rotation angle is 60°, it has a dual advantage. On the one hand, it is helpful to reduce the erosion of the molten steel on the channel and the bottom of the discharging chamber, and on the other hand, it can more effectively exert the heating effect of the induction heater on the molten steel in the channel. This presents a new approach to enhance the application effectiveness of IH tundish.

12.
Respir Physiol Neurobiol ; 327: 104296, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879101

RESUMO

OBJECTIVE: This study aimed to explore the influence of different spontaneous breathing trials (SBTs) on regional ventilation distribution in patients with prolonged mechanical ventilation (PMV). METHODS: A total of 24 patients with PMV were analyzed retrospectively. They received three different SBT modes which are automatic tube compensation (ATC), continuous positive airway pressure (CPAP), and T-piece (TP), over three days, and every SBT lasted two hours. Electrical impedance tomography (EIT) was used to monitor the SBT process and five-minute EIT data from five periods (pre-SBT which is t0, at the beginning and the end of the first hour SBT are t1 and t2, at the beginning and the end of the second hour SBT are t3 and t4) were analyzed. RESULTS: In all PMV patients, the temporal skew of aeration (TSA) values at t3 were significantly different in three SBTs (ATC: 18.18±22.97; CPAP: 20.42±17.01; TP:11.26±11.79; p=0.05). In the weaning success group, TSA (t1) values were significantly different too (ATC: 11.11±13.88; CPAP: 19.09±15.77; TP: 9.09±12.74; p=0.04). In the weaning failure group, TSA (t4) values were significantly different in three SBTs (ATC: 36.67±18.46; CPAP: 15.38±11.69; TP: 17.65±17.93; p=0.04). The patient's inspiratory effort (Global flow index at t1) in patients with weaning failure under CPAP (3.51±4.31) was significantly higher than that in the ATC (1.15±1.47) and TP (0.89±1.28). The SBT mode with the best ventilation uniformity may be the one that activates the respiratory muscles the most which may be the optimal SBT. The SBT mode of most uniform ventilation distribution settings varies from patient to patient. CONCLUSION: The regional ventilation distribution was different for each individual, making the SBT with the best ventilation distribution of patients need to be personalized. EIT is a tool that can be considered for real-time assessment.

13.
Int J Biol Macromol ; 274(Pt 1): 133195, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885869

RESUMO

Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.

14.
Inorg Chem ; 63(26): 12350-12359, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38887050

RESUMO

Hybrid metal halide materials with charming phase transition behaviors have attracted considerable attention. In former works, much attention has been focused on the phase transition triggered by the order-disorder or displacement motions of the organic component. However, manipulating the variation of the inorganic component to achieve the phase transition has rarely been reported. Herein, two novel organic-inorganic hybrid materials, [THPM]n[AgX2]n (THPM = 3,4,5,6-tetrahydropyrimidin-1-ium, X = I for 1 and Br for 2) with the [AgX2]nn- anionic chain structure, were synthesized. At 293 K, the [AgX2]nn- chains in 1 were constructed by the tetramer units of Ag atoms, while that in 2 was assembled by the dimer structure. Upon heating to 355 K, owing to the variation of the metallophilic interaction between adjacent Ag atoms, a unique transformation process from tetramer to dimer in [AgI2]nn- chains of 1 can be detected and endow 1 with a giant anisotropic thermal expansion with linear strain of ∼7% and shear strain of ∼20%, which can be used as a mechanical actuator for switching. Alternatively, for 2, no phase transition process can be observed upon the temperature variation. This work provides an effective approach to design phase transition materials triggered by the inorganic part.

15.
Cell Death Dis ; 15(6): 398, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844470

RESUMO

In chronic kidney disease (CKD), renal fibrosis is an unavoidable result of various manifestations. However, its pathogenesis is not yet fully understood. Here, we revealed the novel role of Homeobox D10 (HOXD10) in CKD-related fibrosis. HOXD10 expression was downregulated in CKD-related in vitro and in vivo fibrosis models. UUO model mice were administered adeno-associated virus (AAV) containing HOXD10, and HOXD10 overexpression plasmids were introduced into human proximal tubular epithelial cells induced by TGF-ß1. The levels of iron, reactive oxygen species (ROS), lipid ROS, the oxidized glutathione/total glutathione (GSSG/GSH) ratio, malonaldehyde (MDA), and superoxide dismutase (SOD) were determined using respective assay kits. Treatment with AAV-HOXD10 significantly attenuated fibrosis and renal dysfunction in UUO model mice by inhibiting NOX4 transcription, ferroptosis pathway activation, and oxidative stress. High levels of NOX4 transcription, ferroptosis pathway activation and profibrotic gene expression induced by TGF-ß1/erastin (a ferroptosis agonist) were abrogated by HOXD10 overexpression in HK-2 cells. Moreover, bisulfite sequencing PCR result determined that HOXD10 showed a hypermethylated level in TGF-ß1-treated HK-2 cells. The binding of HOXD10 to the NOX4 promoter was confirmed by chromatin immunoprecipitation (ChIP) analysis and dual-luciferase reporter assays. Targeting HOXD10 may represent an innovative therapeutic strategy for fibrosis treatment in CKD.


Assuntos
Ferroptose , Fibrose , Proteínas de Homeodomínio , NADPH Oxidase 4 , Insuficiência Renal Crônica , Ferroptose/genética , Animais , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Rim/patologia , Rim/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Linhagem Celular
16.
Opt Express ; 32(8): 14532-14540, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859395

RESUMO

We report a 4.3 µm mid-infrared (mid-IR) high-power amplified spontaneous emission (ASE) fiber source based on CO2-filled nested hollow-core anti-resonant fiber (Nested HC-ARF). The pump source is a homemade hundred-watt-level wavelength-tunable 2 µm single-frequency fiber laser. A 5.7 m long 8-tube Nested HC-ARF is used as the gas cell, with a core diameter of 110 µm and cladding diameter of 400 µm, which exhibits transmission loss of 0.1 dB/m at 2 µm and 0.24 dB/m at 4.3 µm respectively. To improve the coupling efficiency of the high-power pump laser and reduce the influence of the thermal effect at the input end of the hollow-core fiber, the fiber is designed for multimode transmission at the pump wavelength. A continuous wave output power of 6.6 W at 4.3 µm is achieved, and the slope efficiency is 17.05%. To the best of our knowledge, it is the highest output power for such gas-filled HC-ARF ASE sources in 4∼5 µm. This work demonstrates the great potential of gas-filled HC-ARF generating high-power mid-IR emission.

17.
Plant Commun ; : 101009, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915200

RESUMO

Transient heatwaves occur more frequently with climate warming, yet their impacts on crop yield are severely underestimated and even overlooked. Heatwaves spanning mere days or even hours during sensitive stages (e.g., microgametogenesis and flowering) can significantly reduce crop yield by disrupting plant reproduction. Recently, advancements in multi-omics and GWAS analysis have shed light on specific organs (e.g., pollen, lodicule, and style), key metabolic pathways (sugar and reactive oxygen species (ROS) metabolisms, Ca2+ homeostasis), and essential genes for transient heatwaves responses during the most sensitive stages in many crops. Based on this, this review places particular emphasis on the crop's heat-sensitive stages, using pollen development, floret opening, pollination, and fertilization as the central narrative thread. Complementing by key parts such as lodicule and tapetum, the multifaceted effects of transient heatwaves and their molecular basis are systematically demonstrated. A number of heat-tolerant genes for these processes have been identified in major crops such as maize and rice. The mechanisms and key heat-tolerant genes shared over different stages potentially facilitate the improvement of heat-tolerant crops more precisely.

18.
Gut Microbes ; 16(1): 2356278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825779

RESUMO

The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Microbioma Gastrointestinal , Hipertensão , Microbioma Gastrointestinal/fisiologia , Humanos , Hipertensão/microbiologia , Anti-Hipertensivos/uso terapêutico , Animais , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação
19.
Plant J ; 119(2): 982-997, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743909

RESUMO

Low temperature (LT) greatly restricts grain filling in maize (Zea mays L.), but the relevant molecular mechanisms are not fully understood. To better understand the effect of LT on grain development, 17 hybrids were subjected to LT stress in field trials over 3 years, and two hybrids of them with contrasting LT responses were exposed to 30/20°C and 20/10°C for 7 days during grain filling in a greenhouse. At LT, thousand-kernel weight declined, especially in LT-sensitive hybrid FM985, while grain-filling rate was on average about 48% higher in LT-tolerant hybrid DK159 than FM985. LT reduced starch synthesis in kernel mainly by suppression of transcript levels and enzyme activities for sucrose synthase and hexokinase. Brassinolide (BR) was abundant in DK159 kernel, and genes involved in BR and cytokinin signals were inducible by stress. LT downregulated the genes in light-harvesting complex and photosystem I/II subunits, accompanied by reduced photosynthetic rate and Fv/Fm in ear leaf. The LT-tolerant hybrid could maintain a high soluble sugar content and fast interconversion between sucrose and hexose in the stem internode and cob, improving assimilate allocation to kernel at LT stress and paving the way for simultaneous growth and LT stress responses.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Fotossíntese , Amido/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Brassinosteroides/metabolismo , Esteroides Heterocíclicos/farmacologia , Esteroides Heterocíclicos/metabolismo
20.
Pharmacol Res ; 204: 107221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768669

RESUMO

Based on the concept of "Evolutionary Traps", targeting survival essential genes obtained during tumor drug resistance can effectively eliminate resistant cells. While, it still faces limitations. In this study, lapatinib-resistant cells were used to test the concept of "Evolutionary Traps" and no suitable target stand out because of the identified genes without accessible drug. However, a membrane protein PDPN, which is low or non-expressed in normal tissues, is identified as highly expressed in lapatinib-resistant tumor cells. PDPN CAR-T cells were developed and showed high cytotoxicity against lapatinib-resistant tumor cells in vitro and in vivo, suggesting that CAR-T may be a feasible route for overcoming drug resistance of tumor based on "Evolutionary Trap". To test whether this concept is cell line or drug dependent, we analyzed 21 drug-resistant tumor cell expression profiles reveal that JAG1, GPC3, and L1CAM, which are suitable targets for CAR-T treatment, are significantly upregulated in various drug-resistant tumor cells. Our findings shed light on the feasibility of utilizing CAR-T therapy to treat drug-resistant tumors and broaden the concept of the "Evolutionary Trap".


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Imunoterapia Adotiva , Humanos , Animais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia Adotiva/métodos , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Camundongos Nus , Camundongos Endogâmicos BALB C , Camundongos , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...