Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490434

RESUMO

Lipids have been previously implicated in the lifecycle of neuroinvasive viruses. However, the role of lipids in programmed cell death and the relationship between programmed cell death and lipid droplets (LDs) in neuroinvasive virus infection remains unclear. Here, we found that the infection of neuroinvasive virus, such as rabies virus and encephalomyocarditis virus could enhance the LD formation in N2a cells, and decreasing LDs production by targeting diacylglycerol acyltransferase could suppress viral replication. The lipidomics analysis revealed that arachidonic acid (AA) was significantly increased after reducing LD formation by restricting diacylglycerol acyltransferase, and AA was further demonstrated to induce ferroptosis to inhibit neuroinvasive virus replication. Moreover, lipid peroxidation and viral replication inhibition could be significantly alleviated by a ferroptosis inhibitor, ferrostatin-1, indicating that AA affected neuroinvasive virus replication mainly through inducing ferroptosis. Furthermore, AA was demonstrated to activate the acyl-CoA synthetase long-chain family member 4-lysophosphatidylcholine acyltransferase 3-cytochrome P450 oxidoreductase axis to induce ferroptosis. Our findings highlight novel cross-talks among viral infection, LDs, and ferroptosis for the first time, providing a potential target for antiviral drug development.


Assuntos
Ácido Araquidônico , Ferroptose , Gotículas Lipídicas , Replicação Viral , Ferroptose/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Animais , Replicação Viral/efeitos dos fármacos , Camundongos , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Vírus da Encefalomiocardite/efeitos dos fármacos , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Peroxidação de Lipídeos/efeitos dos fármacos , Coenzima A Ligases/metabolismo , Linhagem Celular Tumoral , Humanos
2.
EBioMedicine ; 67: 103353, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33971403

RESUMO

BACKGROUND: Current vaccines against Japanese encephalitis virus (JEV) of flaviviruses have some disadvantages, such as the risk of virulent reversion. Non-structural protein NS1 is conserved among flaviviruses and confers immune protection without the risk of antibody-dependent enhancement (ADE). Therefore, NS1 has become a promising vaccine candidate against flaviviruses. METHODS: A NS1-based vaccine (LTB-NS1∆63) with a truncated NS1 protein (NS1∆63) fused to E. coli heat-labile enterotoxin B subunit (LTB) was expressed in E.coli and explored for its ability to induce immune responses. Safety of LTB-NS1∆63 was assessed by determining its toxicity in vitro and in vivo. Protective capability of LTB-NS1∆63 and its-induced antisera was evaluated in the mice challenged with JEV by analyzing mortality and morbidity. FINDINGS: LTB-NS1∆63 induced immune responses to a similar level as LTB-NS1, but more robust than NS1∆63 alone, particularly in the context of oral immunization of mice. Oral vaccination of LTB-NS1∆63 led to a higher survival rate than that of NS1∆63 or live-attenuated JEV vaccine SA14-14-2 in the mice receiving lethal JEV challenge. LTB-NS1∆63 protein also significantly decreases the morbidity of JEV-infected mice. In addition, passive transfer of LTB-NS1∆63-induced antisera provides a protection against JEV infection in mice. INTERPRETATION: NS1∆63 bears JEV NS1 antigenicity. Besides, LTB-NS1∆63 could serve as a novel protein-based mucosa vaccine targeting JEV and other flaviviruses. FUNDING: This work was supported by the National Natural Science Foundation, Jiangxi Province Science and Technology Committee, Education Department of Jiangxi Province.


Assuntos
Toxinas Bacterianas/genética , Encefalite Japonesa/prevenção & controle , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Vacinas contra Encefalite Japonesa/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Linhagem Celular , Cricetinae , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/administração & dosagem , Vacinas contra Encefalite Japonesa/efeitos adversos , Vacinas contra Encefalite Japonesa/genética , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de Plantas Comestíveis , Proteínas não Estruturais Virais/genética
3.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189710

RESUMO

Accumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway both in vitro and in vivo PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis.IMPORTANCE Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/metabolismo , Neurônios/citologia , Proteínas não Estruturais Virais/metabolismo , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adenina/uso terapêutico , Animais , Apoptose , Sítios de Ligação , Linhagem Celular , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/virologia , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Neurônios/metabolismo , Neurônios/virologia , Multimerização Proteica , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , eIF-2 Quinase/química
4.
Vet Microbiol ; 220: 73-82, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29885805

RESUMO

Japanese encephalitis virus (JEV) infection induces brain tissue disease characterized by neuron death. however, little is known about the underlying mechanism. Using RNA sequencing, we profiled global mRNA expression changes in response to in vitro and in vivo JEV infection. Integration analysis of in vitro and in vivo mRNA transcriptome revealed that JEV infection regulated apoptosis-related Foxo signaling pathway. Foxo expression was reduced by JEV infection in vitro and in vivo. Knockdown of Foxo promoted apoptosis, while its overexpression reduced apoptosis in JEV-infected Neuro-2a cells. JEV infection in Neuro-2a cells decreased the expression of Foxo downstream genes including pro-apoptotic protein Bim, anti-apoptotic protein Bcl-6 and p21. Overexpression of anti-apoptotic proteins Bcl-6 and p21 repressed JEV-induced apoptosis. These findings suggest that Foxo primarily exerts an anti-apoptotic function via Bcl-6 and p21 in JEV-infected Neuro-2a cells. A STAT3 binding site was identified in the promoter region of Foxo by TFBIND software and confirmed by ChIP and reporter assays. JEV infection reduced STAT3 expression as well as its binding at the Foxo promoter compared to mock infection in Neuro-2a cells. Moreover, STAT3 knockdown reduced Foxo promoter activity and Foxo expression. Therefore, JEV reduced Foxo expression, at least in part, by downregulating STAT3. Taken together, we found that JEV induced cell apoptosis by inhibiting STAT3-Foxo-Bcl-6/p21 pathway, which provides a novel insight into JEV-caused encephalitis.


Assuntos
Apoptose , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Fatores de Transcrição Forkhead/genética , Animais , Encéfalo/virologia , Linhagem Celular , Regulação para Baixo , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/virologia , Fatores de Transcrição Forkhead/deficiência , Perfilação da Expressão Gênica , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , RNA Mensageiro , Fator de Transcrição STAT3/genética , Análise de Sequência de RNA , Transdução de Sinais , Quinases Ativadas por p21/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...