Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121653, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678723

RESUMO

The toxic effects of tire wear particles (TWPs) on organisms have attracted widespread concerns over the past decade. However, the underlying toxicity mechanism of TWPs, especially aged TWPs to marine microalgae remains poorly understood. This study investigated the physiological and metabolic responses of Phaeodactylum tricornutum to different concentrations of TWPs (Experiment 1), virgin and differently aged TWPs (Experiment 2) as well as their leachates and leached particles (Experiment 3). Results demonstrated that TWPs promoted the growth of microalgae at low concentrations (0.6 and 3 mg L-1) and inhibited their growth at high concentrations (15 and 75 mg L-1). Moreover, aged TWPs induced more profound physiological effects on microalgae than virgin TWPs, including inhibiting microalgae growth, decreasing the content of Chla, promoting photosynthetic efficiency, and causing oxidative damage to algal cells. Untargeted metabolomics analysis confirmed that aged TWPs induced more pronounced metabolic changes than virgin TWPs. This study represented the first to demonstrate that both particulate- and leachate-induced toxicity of TWPs was increased after aging processes, which was confirmed by the changes in the surface morphology of TWPs and enhanced release of additives. Through the significant correlations between the additives and the microalgal metabolites, key additives responsible for the shift of microalgal metabolites were identified. These results broaden the understanding of the toxicity mechanism of aged TWPs to microalgae at the physiological and metabolic levels and appeal for considering the effects of long-term aging on TWP toxicity in risk assessment of TWPs.


Assuntos
Microalgas , Microalgas/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fotossíntese/efeitos dos fármacos
2.
J Hazard Mater ; 465: 133147, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056266

RESUMO

Sulfonamide antibiotics, a family of broad-spectrum antibiotic drugs, are increasingly used in aquaculture and are frequently detected in aquatic environments. This poses a potential threat to organisms and may cause the evolution of antimicrobial resistance. Therefore, it is important to develop an environmentally friendly and efficient biocatalyst to degrade sulfonamides (SAs) such as sulfadiazine (SD) and sulfathiazole (ST). Here, we realized the direct and efficient degradation of SD and ST using a hydrogen peroxide-dependent artificial catalytic system based on myoglobin (Mb). The arrangements of amino acids at positions 29, 43, 64, and 68 were found to influence catalytic activity. An L29H/H64D/V68I myoglobin mutant showed the best catalytic efficiency (i.e., kcat/Km = 720.42 M-1 s-1) against SD. Next, mutant H64D/V68I showed the best degradation rate against SD (i.e., 91.45 ± 0.16%). Moreover, L29H/H64D/V68I Mb was found to efficiently catalyze ST oxidation (kcat/Km = 670.08 M-1 s-1), while H64D/V68I had the best degradation rate against ST (i.e., 99.45 ± 0.23%). Our results demonstrate that SAs can be efficiently degraded by artificial peroxygenases constructed using a myoglobin scaffold. This therefore provides a simple and economical method for the biodegradation of SD and ST.


Assuntos
Mioglobina , Sulfadiazina , Mioglobina/química , Mioglobina/metabolismo , Antibacterianos , Aminoácidos/metabolismo , Sulfatiazol , Sulfonamidas
3.
Environ Sci Technol ; 57(30): 11267-11278, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477285

RESUMO

The widespread occurrence of tire tread particles (TPs) has aroused increasing concerns over their impacts. However, how they affect the soil fauna remains poorly understood. Here, based on systematically assessing the toxicity of TPs on soil model speciesEnchytraeus crypticusat environmentally relevant concentrations through both soil and food exposure routes, we reported that TPs affected gut microbiota, intestinal histopathology, and metabolites of the worms both through particulate- and leachate-induced effects, while TP leachates exerted stronger effects. The dominant role of TP leachates in TP toxicity was further explained by the findings that worms did not ingest TPs with a particle size of over 150 µm and actively avoided consuming TP particles. Moreover, by comparing the effects of different brands of TPs as well as new and aged TPs, we demonstrated that it was mainly TP leachates that resulted in the ubiquity of the disturbance in the worm's gut microbiota among different brands of TPs. Notably, the large variations in leachate compositions among different brands of TPs provided us a unique opportunity to identify the determinants of TP toxicity. These results provide novel insights into the toxicity of TPs to soil fauna and a reference for toxicity reduction of tires.


Assuntos
Microbioma Gastrointestinal , Poeira , Tamanho da Partícula , Solo
4.
J Hazard Mater ; 456: 131685, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257263

RESUMO

The currently established tools and materials for elimination of the emerging contaminants from environmental and food matrices, particularly micro- and nano-scale plastics, have been largely limited by complicated preparation/operation, high cost, and poor degradability. Here we show that, crosslinking naturally occurring corn starch and gelatin produces ultralight porous sponge upon freeze-drying that can be readily enzymatically decomposed to glucose; The sponge affords capture of micro- and nano-scale plastics into its pores by simple pressing in an efficiency up to 90% while preserving excellent mechanical strength. Heterogeneous diffusion was found to play a dominant role in the adsorption of microplastics by the starch-gelatin sponge. Investigations into the performance of the sponge in complex matrices including tap water, sea water, soil surfactant, and take-out dish soup, further reveal a considerably high removal efficiency (60%∼70%) for the microplastics in the real samples. It is also suggested tiny plastics in different sizes be removable using the sponge with controlled pore size. With combined merits of sustainability, cost-effectiveness, and simple operation without the need for professional background for this approach, industrial and even household removal of tiny plastic contaminants from environmental and food samples are within reach.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Gelatina , Poluentes Químicos da Água/análise , Água
5.
J Hazard Mater ; 451: 131191, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921418

RESUMO

Hexabromocyclododecanes (HBCDs) have given their adverse effects on environment and human health, and highly sensitive analysis of HBCDs in water is urgent. In this study, a new method for the determination of trace HBCDs in water was established by covalent organic framework (COF) based nylon membrane extraction (ME) coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The COF had been self-assembled onto the nylon membrane in a gentle strategy to fabricate COF nylon membrane. Several important ME parameters including the dosage of COF, pH, eluent condition and salinity were systematically investigated. The limits of detection and quantification were 0.011-0.014 and 0.038-0.047 ng/L for three HBCDs, respectively. The linear ranges were from 0.04 to 20 ng/L, and the relative standard deviations were 5.7-17.8 % (intra-day) and 5.2-14.1 % (inter-day). In addition, density functional theory (DFT) calculations on adsorption energy proved that the introduction of halogen bond (XB) made a key contribution to high extraction efficiency and excellent selectivity of COF nylon membrane for HBCDs. The 500 mL of samples, including tap water and reservoir water, could be extracted only in 23 min. The established method presented highly sensitive for ultra-trace analysis of HBCDs in environmental water.


Assuntos
Estruturas Metalorgânicas , Humanos , Cromatografia Líquida de Alta Pressão , Estruturas Metalorgânicas/química , Espectrometria de Massas em Tandem/métodos , Nylons , Água/química , Extração em Fase Sólida/métodos
6.
Chemosphere ; 317: 137882, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657578

RESUMO

Sulfamethoxazole (SMX) is a frequently detected antibiotic in the environment and has attracted much attention. Aeromonas caviae strain GLB-10 was isolated, which could degrade SMX to Aniline and 3-Amino-5-methylisoxazole. Compared to the single bacteria, the mixed bacteria including stain GLB-10, Vibrio diabolicus strain L2-2, Zobellella taiwanensis, Microbacterium testaceum, Methylobacterium, etc, had an ultrahigh degradation efficiency to SMX, with 250 mg/L SMX being degraded in 3 days. In addition to bioproducts of single bacteria, SMX bioproducts by the mixed bacteria also included acetanilide and hydroquinone which were not detected in the single bacteria. The SMX degradation mechanism of the mixed bacteria was more complicated including acetylation, sulfur reduction 4S pathway, and ipso-hydrolysis. The molecular mechanism of the mixed bacteria degrading SMX was also investigated, revealing that the resistance mechanism related to protein outer membrane protein and catalase peroxidase were overexpressed, meanwhile, 6-hydroxynicotinate 3-monooxygenase and ammonia monooxygenase might be the key proteins in SMX degradation. The mixed bacteria could efficiently degrade SMX in different real environments including tap water, river water, artificial lake water, estuary, and, marine water, and have very great research value in bacterial co-metabolism and biodegradation of sulfonamides antibiotics in the environment.


Assuntos
Aeromonas caviae , Sulfametoxazol , Sulfametoxazol/metabolismo , Aeromonas caviae/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Água/metabolismo
7.
J Hazard Mater ; 440: 129711, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933861

RESUMO

Microplastics (MPs) have the characteristics of large specific surface area, high hydrophobicity and surface charge, so they are easy to combine with other pollutants and cause toxic effects on aquatic organisms. Here, we prepared a polyvinyl chloride-microplastics (PVC-MPs) fragmentation model to simulate the real microplastic state, and characterized its composition, morphology, particle size and zeta potential. On this basis, we used single and compound exposure of PVC and di(2-ethylhexyl) phthalate (DEHP) to explore their effects on hatchability and mortality of zebrafish (Danio rerio) embryos and toxicity to oxidative stress and cardiac development in zebrafish larvae. Herein, PVC-MPs slowed down the hatching rate of zebrafish embryos and induced the death of zebrafish, while DEHP could slow down the induced of death, it had no effect on hatching rate. The PVC-MPs/DEHP single pollution could induce the reactive oxygen species (ROS) and activated the antioxidant defense signaling pathway, while the compound group showed the level of feedback autoregulation of NF-E2-related factor 2 (Nrf2) signaling pathway. The single pollution also could inhibit the expression of genes related to cardiac development, while the combined pollution showed an antagonistic effect. This study provided a theoretical basis for the ecotoxicology and biomonitoring of MPs in the natural state.


Assuntos
Dietilexilftalato , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Microplásticos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Ácidos Ftálicos , Plásticos/metabolismo , Cloreto de Polivinila/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
8.
J Hazard Mater ; 411: 125023, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33429311

RESUMO

Sulfamethoxazole (SMX) has attracted much attention due to its high probability of detection in the environment. Marine bacteria Vibrio diabolicus strain L2-2 has been proven to be able to transform SMX. In this study, the potential resistance and biotransformation mechanism of strain L2-2 to SMX, and key genes responses to SMX at environmental concentrations were researched. KEGG pathways were enriched by down-regulated genes including degradation of L-Leucine, L-Isoleucine, and fatty acid metabolism. Resistance mechanism could be concluded as the enhancement of membrane transport, antioxidation, response regulator, repair proteins, and ribosome protection. Biotransformation genes might involve in arylamine N-acetyltransferases (nat), cytochrome c553 (cyc-553) and acyl-CoA synthetase (acs). At the environmental concentration of SMX (0.1-10 µg/L), nat was not be activated, which meant the acetylation of SMX might not occur in the environment; however, cyc-553 was up-regulated under SMX stress of 1 µg/L, which indicated the hydroxylation of SMX could occur in the environment. Besides, the membrane transport and antioxidation of strain L2-2 could be activated under SMX stress of 10 µg/L. The results provided a better understanding of resistance and biotransformation of bacteria to SMX and would support related researches about the impacts of environmental antibiotics.


Assuntos
Sulfametoxazol , Vibrio , Antibacterianos , Biotransformação , Vibrio/genética
9.
Environ Res ; 188: 109718, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32497873

RESUMO

Sulfonamides (SAs) have attracted much attention because of their high detection rates in natural water. In this study, a marine bacterium Vibrio diabolicus strain L2-2 was isolated which could metabolize 9 SAs to a different extent. Compared with SAs and their analogs, SAs with N-oxides of heterocyclic structure were easier to be transformed to their N4-acetylated metabolites or their isoxazole ring rearrangement isomers by strain L2-2. And, gene vdnatA and vdnatG were likely to be the key genes in SAs acetylation process, which might code Arylamine N-acetyltransferase. The biotransformation rates of sulfathiazole(STZ), sulfamonomethoxine(SMT), sulfadiazine(SDZ), sulfamethoxazole(SMX) and sulfisoxazole(SIX) could reach 29.39 ± 5.63, 24.97 ± 4.45, 79.41 ± 4.05, 64.64 ± 1.71, 32.82 ± 4.46% in 6 days, respectively. Besides, the overall optimal conditions for SAs biotransformation were less than 100 mg/L for total SAs in neutral or weakly alkaline medium with the salinity of 10-20‰ and additional nutrients like glucose, sucrose or glycerine. Furthermore, toxicity was demonstrated to be significantly reduced after biotransformation. Together, this study introduced a strategy to use V. diabolicus strain L2-2 to realize simultaneous removal and detoxification of multiple SAs in freshwater and seawater, and revealed SAs removal pathways and relevant molecular mechanism.


Assuntos
Água do Mar , Sulfonamidas , Vibrio
10.
Mar Pollut Bull ; 129(1): 172-178, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29680535

RESUMO

Marine oil spill pollution is an important environmental problem in the world, especially crude oil-soaked marine sediments, because they are difficult to be remediated. In this study, in situ bioremediation of oil-soaked sediment was performed in the middle of the Bohai Sea. Oil-degrading bacteria were adsorbed on powdery zeolite (PZ)/granular zeolites (GZ) surfaces and then wrapped with poly-γ glutamic acid (γ-PGA). Settling column and wave flume experiments were conducted to model marine conditions and to select appropriate biological reagents. The optimal conditions were as follows: the average diameter of GZ 3 mm, mass ratio of GZ/PZ 2:1, and concentration of γ-PGA 7%. After bioremediation, over 50% of most oil-spilled pollutants n-alkanes (C12 to C27) and polycyclic aromatic hydrocarbons were degraded in 70 days. This work resulted in a successful trial of in situ bioremediation of oil-soaked marine sediments.


Assuntos
Bacillus/crescimento & desenvolvimento , Sedimentos Geológicos/química , Poluição por Petróleo/análise , Petróleo/análise , Ácido Poliglutâmico/análogos & derivados , Poluentes Químicos da Água/análise , Zeolitas/química , Adsorção , Biodegradação Ambiental , China , Sedimentos Geológicos/microbiologia , Modelos Teóricos , Oceanos e Mares , Ácido Poliglutâmico/química
11.
Water Res ; 103: 383-390, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27486950

RESUMO

Mercury is a toxic heavy metal and presents significant threats to organisms and natural ecosystems. Recently, the mercury remediation as well as its detection by environmental-friendly biotechnology has received increasing attention. In this study, carboxylesterase E2 from mercury-resistant strain Pseudomonas aeruginosa PA1 has been successfully displayed on the outer membrane of Escherichia coli Top10 bacteria to simultaneously adsorb and detect mercury ion (Hg(2+)). The transmission electron microscopy analysis shows that Hg(2+) can be absorbed by carboxylesterase E2 and accumulated on the outer membrane of surface-displayed E. coli bacteria. The adsorption of Hg(2+) followed a physicochemical, equilibrated and saturatable mechanism, which well fits the traditional Langmuir adsorption model. The surface-displayed system can be regenerated through regulating pH values. As its activity can be inhibited by Hg(2+), carboxylesterase E2 has been used to detect the concentration of Hg(2+) in water samples. The developed surface display system will be of great potential in the simultaneous bioremediation and biodetection of environmental mercury pollution.


Assuntos
Biodegradação Ambiental , Mercúrio/química , Carboxilesterase , Escherichia coli , Concentração de Íons de Hidrogênio , Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...