Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 223: 116162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38527557

RESUMO

Immune checkpoint inhibitors have unveiled promising clinical prospects in cancer treatment. Nonetheless, their effectiveness remains restricted, marked by consistently low response rates and affecting only a subset of patients. The co-blockade of TIGIT with PD-1 has exhibited substantial anti-tumor effects. Notably, there is a dearth of reports on small-molecule inhibitors concurrently targeting both TIGIT and PD-1. In this study, we employed Microscale Thermophoresis (MST) to screen our laboratory's existing repository of small molecules. Our findings illuminated Gln(TrT) 's affinity for both TIGIT and PD-1, affirming its potential to effectively inhibit TIGIT/PVR and PD-1/PD-L1 pathways. In vitro co-culture experiments substantiated Gln(TrT)'s proficiency in restoring Jurkat T-cell functionality by blocking both TIGIT/PVR and PD-1/PD-L1 interactions. In the MC38 murine tumor model, Gln(TrT) emerges as a pivotal modulator, promoting the intratumoral infiltration and functional competence of CD8+ T cells. Furthermore, whether used as a monotherapy or in conjunction with radiotherapy, Gln(TrT) substantially impedes MC38 tumor progression, significantly extending the survival of murine subjects.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Animais , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/metabolismo , Receptores Imunológicos , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
Fish Physiol Biochem ; 49(2): 253-274, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36897433

RESUMO

A 90-day experiment was conducted to explore the effects of creatine on growth performance, liver health status, metabolites, and gut microbiota in Megalobrama amblycephala. There were 6 treatments as follows: control (CD, 29.41% carbohydrates), high carbohydrate (HCD, 38.14% carbohydrates), betaine (BET, 1.2% betaine + 39.76% carbohydrates), creatine 1 (CRE1, 0.5% creatine + 1.2% betaine + 39.29% carbohydrates), creatine 2 (CRE2, 1% creatine + 1.2% betaine + 39.50% carbohydrates), and creatine 3 (CRE3, 2% creatine + 1.2% betaine + 39.44% carbohydrates). The results showed that supplementing creatine and betaine together reduced the feed conversion ratio significantly (P < 0.05, compared to CD and HCD) and improved liver health (compared to HCD). Compared with the BET group, dietary creatine significantly increased the abundances of Firmicutes, Bacteroidota, ZOR0006, and Bacteroides and decreased the abundances of Proteobacteria, Fusobacteriota, Vibrio, Crenobacter, and Shewanella in the CRE1 group. Dietary creatine increased the content of taurine, arginine, ornithine, γ-aminobutyric acid (g-ABA), and creatine (CRE1 vs. BET group) and the expression of creatine kinase (ck), sulfinoalanine decarboxylase (csad), guanidinoacetate N-methyltransferase (gamt), glycine amidinotransferase (gatm), agmatinase (agmat), diamine oxidase1 (aoc1), and glutamate decarboxylase (gad) in the CRE1 group. Overall, these results suggested that dietary supplementation of creatine (0.5-2%) did not affect the growth performance, but it altered the gut microbial composition at the phylum and genus levels, which might be beneficial to the gut health of M. amblycephala; dietary creatine also increased the serum content of taurine by enhancing the expressions of ck and csad and increased the serum content of g-ABA by enhancing the arginine content and the expressions of gatm, agmat, gad, and aoc1.


Assuntos
Cipriniformes , Microbioma Gastrointestinal , Animais , Creatina/farmacologia , Betaína , Taurina/farmacologia , Dieta/veterinária , Cipriniformes/metabolismo , Creatina Quinase , Carboidratos , Expressão Gênica , Suplementos Nutricionais/análise , Ração Animal/análise
3.
Metabolites ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36837893

RESUMO

Elevated environmental ammonia leads to respiratory disorders and metabolic dysfunction in most fish species, and the majority of research has concentrated on fish behavior and gill function. Prior studies have rarely shown the molecular mechanism of the largemouth bass hepatic response to ammonia loading. In this experiment, 120 largemouth bass were exposed to total ammonia nitrogen of 0 mg/L or 13 mg/L for 3 and 7 days, respectively. Histological study indicated that ammonia exposure severely damaged fish liver structure, accompanied by increased serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase activity. RT-qPCR results showed that ammonia exposure down-regulated the expression of genes involved in glycogen metabolism, tricarboxylic acid cycle, lipid metabolism, and urea cycle pathways, whereas it up-regulated the expression of genes involved in gluconeogenesis and glutamine synthesis pathways. Thus, ammonia was mainly converted to glutamine in the largemouth bass liver during ammonia stress, which was rarely further used for urea synthesis. Additionally, transcriptome results showed that ammonia exposure also led to the up-regulation of the oxidative phosphorylation pathway and down-regulation of the mitogen-activated protein kinase signaling pathway in the liver of largemouth bass. It is possible that the energy supply of oxidative phosphorylation in the largemouth bass liver was increased during ammonia exposure, which was mediated by the MAPK signaling pathway.

4.
Metabolites ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38248825

RESUMO

Aquaculture provides a significant amount of high-quality protein for human consumption and is one of the most efficient protein production industries [...].

6.
Front Immunol ; 13: 997985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189250

RESUMO

Cottonseed protein concentrate (CPC) has been proven to partially replace fishmeal without adverse effects on fish growth performance, while little information is known about the effects on liver health during bacterial infection. In the present study, 15% CPC was included into the diet of juvenile largemouth bass (32.12 ± 0.09g) to replace fishmeal for 8 weeks, with fish growth potential and hepatic inflammatory responses during Nocardia seriolae (N. seriolae) infection systemically evaluated. After adaptation to dietary CPC inclusion, largemouth bass even exhibited better growth potential with higher SGR and WGR during the last three weeks of whole feeding trial, which was accompanied with higher phosphorylation level of TOR signaling and higher mRNA expression level of myogenin (myog). At the end of 8-weeks feeding trial, the histological structure of largemouth bass liver was not significantly affected by dietary CPC inclusion, accompanied with the similar expression level of genes involved in innate and adaptive immunity and comparable abundance of T cells in bass liver. N.seriolae infection induced the pathological changes of bass liver, while such hepatic changes were more serious in CPC group than that in FM group. Additionally, RT-qPCR results also suggested that largemouth bass fed with CPC experienced much higher inflammatory potential both in liver and gill during N. seriolae infection, which was accompanied with higher expression level of genes involved in pyroptosis. Therefore, this study demonstrated that the application of CPC in largemouth bass diet should be careful, which may induce higher inflammatory potential during N. seriolae infection.


Assuntos
Bass , Nocardiose , Animais , Bass/genética , Óleo de Sementes de Algodão , Proteínas Alimentares , Miogenina , RNA Mensageiro
7.
Viruses ; 14(8)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36016461

RESUMO

The fish intestinal mucosa is among the main sites through which environmental microorganisms interact with the host. Therefore, this tissue not only constitutes the first line of defense against pathogenic microorganisms but also plays a crucial role in commensal colonization. The interaction between the mucosal immune system, commensal microbiota, and viral pathogens has been extensively described in the mammalian intestine. However, very few studies have characterized these interactions in early vertebrates such as teleosts. In this study, rainbow trout (Oncorhynchus mykiss) was infected with infectious hematopoietic necrosis virus (IHNV) via a recently developed immersion method to explore the effects of viral infection on gut immunity and microbial community structure. IHNV successfully invaded the gut mucosa of trout, resulting in severe tissue damage, inflammation, and an increase in gut mucus. Moreover, viral infection triggered a strong innate and adaptive immune response in the gut, and RNA-seq analysis indicated that both antiviral and antibacterial immune pathways were induced, suggesting that the viral infection was accompanied by secondary bacterial infection. Furthermore, 16S rRNA sequencing also revealed that IHNV infection induced severe dysbiosis, which was characterized by large increases in the abundance of Bacteroidetes and pathobiont proliferation. Moreover, the fish that survived viral infection exhibited a reversal of tissue damage and inflammation, and their microbiome was restored to its pre-infection state. Our findings thus demonstrated that the relationships between the microbiota and gut immune system are highly sensitive to the physiological changes triggered by viral infection. Therefore, opportunistic bacterial infection must also be considered when developing strategies to control viral infection.


Assuntos
Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Microbiota , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Imunidade nas Mucosas , Inflamação , Mucosa Intestinal , Mamíferos , RNA Ribossômico 16S/genética
8.
J Immunol ; 209(6): 1095-1107, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985789

RESUMO

Mammalian studies have demonstrated that B cell immune responses are regulated by mechanistic target of rapamycin complex 1 (mTORC1) signaling. Teleost fish represent the oldest living bony vertebrates that contain bona fide B cells. So far, whether the regulatory mechanism of mTORC1 signaling in B cells occurred in teleost fish is still unknown. In this study, we developed a fish model by using rapamycin (RAPA) treatment to inhibit mTORC1 signaling and demonstrated the role of mTORC1 signaling in teleost B cells. In support, we found inhibition of mTORC1 signaling by RAPA decreased the phagocytic capacity, proliferation, and Ig production of B cells. Critically, Flavobacterium columnare induced specific IgM binding in serum, and these titers were significantly inhibited by RAPA treatment, thus decreasing Ab-mediated agglutination of F. columnare and significantly increasing the susceptibility of fish upon F. columnare reinfection. Collectively, our findings elucidated that the mTORC1 pathway is evolutionarily conserved in regulating B cell responses, thus providing a new point for understanding the B cells functions in teleost fish.


Assuntos
Linfócitos B , Transdução de Sinais , Animais , Peixes , Imunoglobulina M , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo/farmacologia
9.
J Inflamm Res ; 15: 2323-2331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431566

RESUMO

Pyroptosis is a form of programmed cell death, which is executed by gasdermin family proteins. Under the stimulation of pathogen- and/or damage-associated molecular patterns, pattern recognition receptors (PRRs) such as Nod like receptors could recruit apoptosis-associated speck-like protein containing a CARD (ASC) and pro-caspases to form inflammasomes and then activate caspases through various pathways. The activated caspases then cleave gasdermin family proteins, and N-terminal (NT) domains of gasdermins were released to form oligomeric pores, resulting in the increased membrane permeability, cell swelling, and final pyroptosis. During this process, caspases also promote the maturation and release of inflammatory cytokines such as IL-1ß and IL-18, thus pyroptosis is also named inflammatory cell death. Unlike numerous gasdermin family proteins in mammals, only gasdermin E (GSDME) has been identified in fish. GSDME in fish can be cleaved by caspase-a/-b to release its NT domain and induce pyroptosis. Studies indicated that pyroptosis in fish mainly depends on NLR family pyrin domain-containing 3 (NLRP3) inflammasome. ASC and different caspase proteins also were identified in different fish species. The influences of pathogenic microorganism infection and environmental pollutants on fish pyroptosis were studied in recent years. Considering that fish living environment is affected by multiple factors such as water salinity, temperature, oxygen supply, and highly fluctuating food supply, the in-depth research about fish pyroptosis will contribute to revealing the mechanism of pyroptosis during evolution.

10.
Fish Shellfish Immunol ; 125: 90-100, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35483597

RESUMO

The major histocompatibility complex (MHC) is an important component of the immune system of vertebrates, which plays a vital role in presenting extrinsic antigens. In this study, we cloned and characterized the mhc ⅡA and mhc ⅡB genes of yellow catfish Pelteobagrus fulvidraco. The open reading frames (ORFs) of mhc ⅡA and mhc ⅡB genes were 708 bp and 747bp in length, encoding 235 and 248 amino acids, respectively. The structure of mhc ⅡA and mhc ⅡB includes a signal peptide, an α1/ß1 domain, an α2/ß2 domain, a transmembrane region and a cytoplasmic region. Homologous identity analysis revealed that both mhc ⅡA and mhc ⅡB shared high protein sequence similarity with that of Chinese longsnout catfish Leiocassis longirostris. mhc ⅡA and mhc ⅡB showed similar expression patterns in different tissues, with the higher expression level in spleen, head kidney and gill and lower expression in liver, stomach, gall bladder and heart. The mRNA expression level of mhc ⅡA and mhc ⅡB in different embryonic development stages also showed the similar trends. The higher expression was detected from fertilized egg to 32 cell stage, low expression from multicellular period to 3 days post hatching (dph), and then the expression increased to a higher level from 4 dph to 14 dph. The mRNA expression levels of mhc ⅡA and mhc ⅡB were significantly up-regulated not only in the body kidney and spleen, but also in the midgut, hindgut, liver and gill after challenge of Flavobacterium columnare. The results suggest that Mhc Ⅱ plays an important role in the anti-infection process of yellow catfish P. fulvidraco.


Assuntos
Peixes-Gato , Animais , Proteínas de Peixes/química , Flavobacterium/genética , Filogenia , RNA Mensageiro/metabolismo
11.
Front Physiol ; 12: 768907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777025

RESUMO

Non-nutritional stress during early life period has been reported to promote the metabolic programming in fish induced by nutritional stimulus. Sodium chloride (NaCl) and hydrogen peroxide (H2O2) have been widely applied during fish egg hatching, but the influences on health and metabolism of fish in their later life remain unknown. In the present study, H2O2 treatment at 400mg/L but not 200mg/L significantly increased the loach hatchability and decreased the egg mortality, while NaCl treatment at 1,000 and 3,000mg/L showed no significant influences on the loach hatchability nor egg mortality. Further studies indicated that 400mg/L H2O2 pre-treatment significantly enhanced the antioxidant capacity and the mRNA expression of genes involved in immune response of loach larvae, accompanied by the increased expression of genes involved in fish early development. However, the expression of most genes involved in lipid metabolism, including catabolism and anabolism of loach larvae, was significantly upregulated after 200mg/L H2O2 pre-treatment. NaCl pre-treatment also increased the expression of antioxidant enzymes; however, only the expression of C1q within the detected immune-related genes was upregulated in loach larvae. One thousand milligram per liter NaCl pre-treatment significantly increased the expression of LPL and genes involved in fish early development. Thus, our results suggested the programming roles of 400mg/L H2O2 pre-treatment during egg hatching in enhancing antioxidant capacity and immune response of fish larvae via promoting fish early development.

12.
Anim Nutr ; 7(3): 716-727, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34466676

RESUMO

Fish have limited ability in endogenous biosynthesis of arginine. Arginine is an indispensable amino acid for fish, and the arginine requirement varies with fish species and fish size. Recent studies on fish have demonstrated that arginine influences nutrient metabolism, stimulates insulin release, is involved in nonspecific immune responses and antioxidant responses, and elevates disease resistance. Specifically, arginine can regulate energy homeostasis via modulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway, and also regulate protein synthesis via activating the target of rapamycin (TOR) signaling pathway. The present article reviews pertinent knowledge of arginine in fish, including dietary quantitative requirements, endogenous anabolism and catabolism, regulation of the endocrine and metabolic systems, and immune-regulatory functions under pathogenic challenge. Our findings showed that further data about the distribution of arginine after intake into specific cells, its sub-cellular sensor to initiate downstream signaling pathways, and its effects on fish mucosal immunity, especially the adaptive immune response against pathogenic infection in different species, are urgently needed.

13.
Theriogenology ; 162: 59-66, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444917

RESUMO

Ovary development of Chinese sturgeon (Acipenser sinensis) in controlled breeding has been reported to respond to dietary lipid levels. However, the corresponding molecular regulatory mechanism about ovary development of Chinese sturgeon is still unclear. To elucidate the molecular mechanism of vitellogenic deposition and hydrolysis, six key genes, namely, vtgr (vitellogenin receptor), atp6v1c1 (Vacuolar H+-ATPase subunit c1), atp6v1h (Vacuolar H+-ATPase subunit h), ctsb (cathepsin B), ctsd (cathepsin D) and ctsl (cathepsin L) involved in vitellogenic deposition and hydrolysis of Chinese sturgeon were cloned and characterized, and their spatio-temporal mRNA expression profiles as well as transcriptional responses to dietary lipid level were investigated. The full-length cDNA sequences of these six genes showed similar domain structure to their respective orthologous genes from other vertebrates. Tissue-specific expression patterns of these genes were observed in ovary, liver, muscle, spleen, brain, gill, intestine, heart, stomach and kidney. Ovarian expression level of vtgr was the highest in stage II, and ctsl expression was the highest in stage IV, while the mRNA expressions of other 4 genes were the highest in stage III. The increase of dietary lipid level promoted ovary development and elevated the expressions of vtgr, atp6v1c1, atp6v1h, ctsb and ctsd in the ovary. The results of the present study indicated that these genes are crucial for vitellogenic deposition, and provided a preliminary understanding on the molecular regulation of vitellogenic deposition and hydrolysis during ovary development of Chinese sturgeon.


Assuntos
Peixes , Ovário , Animais , China , Feminino , Peixes/genética , Hidrólise , Diferenciação Sexual
14.
Antioxidants (Basel) ; 11(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35052548

RESUMO

The susceptibility of animals to pathogenic infection is significantly affected by nutritional status. The present study took yellow catfish (Pelteobagrus fulvidraco) as a model to test the hypothesis that the protective roles of glutamine during bacterial infection are largely related to its regulation on the immune and antioxidant system, apoptosis and autophagy. Dietary glutamine supplementation significantly improved fish growth performance and feed utilization. After a challenge with Flavobacterium columnare, glutamine supplementation promoted il-8 and il-1ß expression via NF-κB signaling in the head kidney and spleen, but inhibited the over-inflammation in the gut and gills. Additionally, dietary glutamine inclusion also enhanced the systematic antioxidant capacity. Histological analysis showed the protective role of glutamine in gill structures. Further study indicated that glutamine alleviated apoptosis during bacterial infection, along with the reduced protein levels of caspase-3 and the reduced expression of apoptosis-related genes. Moreover, glutamine also showed an inhibitory role in autophagy which was due to the increased activation of the mTOR signaling pathway. Thus, our study for the first time illustrated the regulatory roles of glutamine in the fish immune and antioxidant system, and reported its inhibitory effects on fish apoptosis and autophagy during bacterial infection.

15.
Front Immunol ; 11: 583740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304348

RESUMO

The olfactory organs (OOs) of vertebrates play important roles in their extraordinary chemosensory capacity, a process during which they are continuously exposed to environmental pathogens. Nasopharynx-associated lymphoid tissue (NALT) contains B cells and immunoglobulins (Igs), which function as the first defense line against antigens in mammals and also exist in teleosts. However, the immune responses of teleost NALT B cells and Igs during bacterial infection remain largely uncharacterized. In this study, rainbow trout were infected with Flavobacterium columnare via continuous immersion, after which the adaptive immune responses within NALT were evaluated. F. columnare could invade trout nasal mucosa and cause histopathological changes in trout OO. Moreover, the accumulation of IgT+ B cells in trout nasal mucosa was induced by bacterial challenge, which was accompanied by strong bacteria-specific IgT responses in the nasal mucus. Importantly, our study is the first to report local nasal-specific immune responses in teleosts during bacterial challenge by characterizing the local proliferation of IgT+ B cells and generation of bacteria-specific IgT in trout OOs after F. columnare infection. In addition to the strong IgT and IgT+ B cells responses in OO, bacteria-specific IgT and IgM were also detected in serum following bacterial challenge. Taken together, our findings suggest that IgT functions as an important mucosal Ig in teleost NALT and mediates local adaptive immunity during bacterial infection, which is similar to their protective role during parasitic infection.


Assuntos
Imunidade Adaptativa/imunologia , Antibacterianos/imunologia , Encéfalo/imunologia , Imunidade nas Mucosas/imunologia , Imunoglobulinas/imunologia , Oncorhynchus mykiss/imunologia , Animais , Linfócitos B/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Flavobacterium/imunologia , Linfócitos/imunologia , Mucosa Nasal/imunologia , Oncorhynchus mykiss/microbiologia
16.
Front Immunol ; 11: 567941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123139

RESUMO

Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.


Assuntos
Peixes/imunologia , Imunidade nas Mucosas , Imunoglobulinas/imunologia , Mucosa/imunologia , Vacinação , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes , Peixes/microbiologia , Brânquias/imunologia , Brânquias/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Imunização , Imunoglobulina D/imunologia , Imunoglobulina M/imunologia , Tecido Linfoide/imunologia , Microbiota/imunologia , Mucosa/metabolismo , Mucosa/microbiologia , Especificidade de Órgãos/imunologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo
17.
Fish Shellfish Immunol ; 99: 654-662, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32001351

RESUMO

Columnaris disease, induced by Flavobacterium columnare, seriously affects the health of freshwater fish species and damages the mucosal tissues, such as the fins, skin, and gills. Teleosts represent the first bony vertebrate to contain both innate and adaptive immune responses against pathogens. So far, three immunoglobulin isotypes (IgM, IgD, and IgT/IgZ) have been identified in teleost fish, and IgT in mucosal tissues of teleost fish was reported to perform a similar function to IgA in mammals during parasitic infection. However, very limited information is known about the function of IgT in gill mucosal tissues during bacterial infection. In the present study, rainbow trout (Oncorhynchus mykiss) was infected with F. columnare (Fc) via immersion. After Fc infection, the gill structure of rainbow trout showed serious hyperplasia symptoms on the secondary lamellae at 12 h post infection (hpi). Moreover, the mRNA expression levels of NOS2 and cathelicidin-1 were significantly upregulated immediately at 12 hpi and showed high expression throughout the experiment. IgT and IgM showed much higher mRNA expression levels at 28 days post infection (dpi) and 75 dpi, while IgD only showed high mRNA expression levels at 28 dpi. Importantly, the accumulation of IgT+ B cells and strong bacteria-specific IgT responses were detected in the gill lamellae of both infected fish (28 dpi) and survivor fish (75 dpi). Overall, our results suggest that IgT and IgT+ B cells play a central role in the adaptive immune responses of fish gill mucosa against bacterial infection.


Assuntos
Doenças dos Peixes/imunologia , Infecções por Flavobacteriaceae/veterinária , Brânquias/imunologia , Imunoglobulinas/imunologia , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/microbiologia , Imunidade Adaptativa , Animais , Doenças dos Peixes/microbiologia , Proteínas de Peixes , Infecções por Flavobacteriaceae/imunologia , Flavobacterium , Imunidade Humoral , Imunoglobulina D/imunologia , Imunoglobulina M/imunologia
18.
Fish Shellfish Immunol ; 96: 223-234, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31821845

RESUMO

In the past decades, the aquaculture industry made great progress in China, which contributes more than 70% yield of the world's farmed fish. Along with the rapid growth of fish production, increased emergence and outbreak of numbers of diseases pose harm to the aquaculture industry and food safety. From the efficient, safe, environmental and ethical aspects, vaccines is definitely the most appropriate and focused method to control different kinds of fish diseases. In China, researchers have done huge works on the fish vaccines, and so far six domestic aquatic vaccine products along with one imported aquatic vaccine have obtained the national veterinary medicine certificate. More critically, some new vaccines have also entered the field experiment stage and showed broad market prospects. In the present review, authors summarize seven aquatic vaccines, including the live vaccine against grass carp hemorrhagic disease, the inactivated vaccine against Aeromonas hydrophila sepsis in fish, the live vaccine against Edwardsiella tarda in turbot, the anti-idiotypic antibody vaccine against Vibrio alginolyticus, V. parahaemolyticus, and E. tarda in Japanese flounder, the cell-cultured inactivated vaccine against grass carp hemorrhagic disease, the inactivated vaccine against fish infectious spleen and kidney necrosis virus (ISKNV), and the genetically engineered live vaccine against V. anguillarum in turbot. Moreover, different delivery routes of fish vaccines are also compared in this review, along with differential fish immune response after vaccination. All these efforts will ultimately benefit the healthy and sustainable development of aquaculture industry in China.


Assuntos
Vacinas Bacterianas/uso terapêutico , Doenças dos Peixes/prevenção & controle , Vacinas Virais/uso terapêutico , Animais , Vacinas Bacterianas/análise , China , Vacinas Virais/análise
19.
Fish Shellfish Immunol ; 97: 153-164, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31857222

RESUMO

The present study was conducted to evaluate the influence of Glycyrrhiza uralensis (G. uralensis) extracts on the growth performance, histological structure, immune response and disease resistance against Flavobacterium columnare (F. columnare) of yellow catfish. Fish were fed with two different diets, i.e., basal diet as control group (CG) and diet containing G. uralensis extracts as experimental group (GG). After 60 days feeding, growth performance of GG fish was significantly improved, with increased WG and SGR but decreased FCR compared to CG fish. Fish were then challenged with F. columnare for two times, as fish showed rare mortality after the first infection. GG fish showed significantly lower cumulative mortality during F. cloumnare infection than CG fish after 21 days infection (dpi). Epithelial cell exfoliation and obvious cellular vacuolization in the skin and congestion of gill lamellae were detected in CG fish, while GG fish showed increased width of epidermis and mucous cells number in skin, and increased length of secondary lamina in gill. GG fish also exhibited higher enzyme activity of lysozyme in serum and mRNA expression of lysozyme in head kidney than CG fish at most time points post infection. G. uralensis extracts supplementation also induced earlier serum anti-oxidative responses, with increased superoxide dismutase activity and total antioxidant capacity in GG fish at 1 dpi. Compared to CG fish, GG fish showed increased expression level of genes involved in TLRs-NFκB signaling (TLR2, TLR3, TLR5, TLR9, Myd88, and p65NFκB), resulting in higher expression levels of pro-inflammatory cytokines (IL-1ß and IL-8) in the head kidney post infection. However, these genes showed deviation in the gill of GG fish, which increased at some time points but decreased at other time points. Moreover, G. uralensis extracts supplementation also significantly unregulated the expression levels of IgM and IgD in head kidney, and the expression levels of IgM in the gill of yellow catfish, suggesting the elevated humoral immune response during F. columnare infection. All these results contributed to the elevated disease resistance ability against F. cloumnare infection of yellow catfish after dietary G. uralensis extracts supplementation.


Assuntos
Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/imunologia , Resistência à Doença , Doenças dos Peixes/prevenção & controle , Infecções por Flavobacteriaceae/veterinária , Glycyrrhiza uralensis/química , Extratos Vegetais/administração & dosagem , Ração Animal/análise , Animais , Peixes-Gato/microbiologia , Suplementos Nutricionais , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/prevenção & controle , Flavobacterium , Extratos Vegetais/imunologia , Transdução de Sinais
20.
Phytomedicine ; 63: 153035, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31377586

RESUMO

OBJECTIVE: Baicalin, which is isolated from Scutellariae Radix, has been shown to possess therapeutic potential for different diseases. Cardiac microvessel injury in myocardial ischemia-reperfusion (IR) has been extensively explored. However, there have been no studies investigating the physiological regulatory mechanisms of baicalin on nitric oxide production and the necroptosis of cardiac microvascular endothelial cells (CMECs) in myocardial IR injury. This study was designed to investigate the contribution of baicalin to repressing necroptosis and preventing IR-mediated CMEC dysfunction. MATERIALS AND METHODS: Indicators of ventricular structure and function were measured by an echocardiographic system. An MTT assay was performed to assess cell viability. Nitrite detection was performed to detect nitric oxide content, and cGMP content was determined using a commercially available cGMP complete ELISA kit. Morphology and molecular characteristics were detected by electron micrographs, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. RESULT: Our results demonstrated that baicalin significantly improved cardiac function, decreased the myocardial infarction area, and inhibited myocardial cell apoptosis. Moreover, baicalin had a protective effect on cardiac microvessels and promoted the production of nitric oxide (NO) and the level of cGMP in rats that underwent myocardial IR injury. The results of the in vitro experiments showed that baicalin markedly improved cell activity and function in CMECs exposed to hypoxia-reoxygenation (HR). Further experiments indicated that baicalin supplementation suppressed the protein expression of RIP1, RIP3 and p-MLKL to interrupt CMEC necroptosis. In addition, baicalin promoted the production of NO via activating the PI3K-AKT-eNOS signaling pathway. Taken together, our results identified the PI3K-AKT-eNOS axis as a new pathway responsible for reperfusion-mediated microvascular damage. CONCLUSION: Baicalin protected CMECs in IR rats by promoting the release of NO via the PI3K-AKT-eNOS pathway and mitigated necroptosis by inhibiting the protein expression of RIP1, RIP3 and p-MLKL.


Assuntos
Cardiotônicos/farmacologia , Flavonoides/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...