Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Dermatol ; 32(12): 2102-2111, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37846925

RESUMO

Acne is a chronic disease that often persists for years. Skin microbial communities play an essential role in the development of acne. However, limited information is available about the dynamic patterns of skin microbiota in acne. This study aimed to characterize microbial community changes in skin pores and surfaces of acne patients with varying disease time. In this study, a total of 70 skin samples from 22 subjects were collected and sequenced using 16S rRNA amplicon sequencing. Although microbial compositions in skin pores were similar over time, significant differences in microbial structure were observed on the skin surface, with the dominance of Cutibacterium in the first 3 years and replacement by Staphylococcus in 4-6 years. Lactobacillus and Acinetobacter were more abundant in the normal group and continuingly decreased with disease time on the skin surface. Microbial networks further revealed substantial increases in microbial interactions in the 4-6 years group in both skin surfaces and pores. These results demonstrate that the skin microbiota alters with the disease duration and may provide a potential guide in redirecting skin microbiota towards healthy states.


Assuntos
Acne Vulgar , Microbiota , Humanos , RNA Ribossômico 16S/genética , Estudos Transversais , Acne Vulgar/microbiologia , Pele/microbiologia , Microbiota/genética , Estudos de Coortes
2.
Front Microbiol ; 14: 1191436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560521

RESUMO

As an important metabolic enzyme in methylotrophs, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases play significant roles in the global carbon and nitrogen cycles. In this article, a calcium (Ca2+)-dependent alcohol dehydrogenase PedE_M.s., derived from the methylotroph Methylopila sp. M107 was inserted into the modified vector pCM80 and heterologously expressed in the host Methylorubrum extorquens AM1. Based on sequence analysis, PedE_M.s., a PQQ-dependent dehydrogenase belonging to a methanol/ethanol family, was successfully extracted and purified. Showing by biochemical results, its enzymatic activity was detected as 0.72 U/mg while the Km value was 0.028 mM while employing ethanol as optimal substrate. The activity of PedE_M.s. could be enhanced by the presence of potassium (K+) and calcium (Ca2+), while acetonitrile and certain common detergents have been found to decrease the activity of PedE_M.s.. In addition, its optimum temperature and pH were 30°C and pH 9.0, respectively. Chiefly, as a type of Ca2+-dependent alcohol dehydrogenase, PedE_M.s. maintained 60-80% activity in the presence of 10 mM lanthanides and displayed high affinity for ethanol compared to other PedE-type enzymes. The 3D structure of PedE_M.s. was predicted by AlphaFold, and it had an 8-bladed propeller-like super-barrel. Meanwhile, we could speculate that PedE_M.s. contained the conserved residues Glu213, Asn300, and Asp350 through multiple sequence alignment by Clustal and ESpript. The analysis of enzymatic properties of PedE_M.s. enriches our knowledge of the methanol/ethanol family PQQ-dependent dehydrogenase. This study provides new ideas to broaden the application of alcohol dehydrogenase in alcohol concentration calculation, biosensor preparation, and other industries.

3.
Neuropharmacology ; 191: 108563, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33887311

RESUMO

Increasing evidence indicates that gut microbiota and its metabolites can influence the brain function and the related behaviors. Trimethylamine N-oxide (TMAO), an indirect metabolite of gut microbiota, has been linked to aging, cognitive impairment, and many brain disorders. However, the potential effects of TMAO on social behaviors remain elusive. The present study investigated the effects of early life systemic TMAO exposure and intra-hippocampal TMAO infusion during adulthood on social behaviors in mice. We also analyzed the effects of intra-hippocampus infusion of TMAO during adulthood on levels of metabolites. The results showed that both systemic TMAO exposure in the post-weaning period and intra-hippocampal TMAO infusion during adulthood decreased social rank and reduced sexual preference in adult mice. Data from LC-MS metabolomics analysis showed that intra-hippocampal TMAO infusion induced a total 207 differential metabolites, which belongs to several metabolic or signaling pathways, especially FoxO signaling pathway and retrograde endocannabinoid signaling pathway. These data suggest that TMAO may affect social behaviors by regulating metabolites in the hippocampus, which may provide a new insight into the role of gut microbiota in regulating social behaviors.


Assuntos
Microbioma Gastrointestinal , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Metilaminas/farmacologia , Comportamento Social , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...