Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cancer Cell Int ; 24(1): 164, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730293

RESUMO

Kidney Clear Cell Carcinoma (KIRC), the predominant form of kidney cancer, exhibits a diverse therapeutic response to Immune Checkpoint Inhibitors (ICIs), highlighting the need for predictive models of ICI efficacy. Our study has constructed a prognostic model based on 13 types of Programmed Cell Death (PCD), which are intertwined with tumor progression and the immune microenvironment. Validated by analyses of comprehensive datasets, this model identifies seven key PCD genes that delineate two subtypes with distinct immune profiles and sensitivities to anti-PD-1 therapy. The high-PCD group demonstrates a more immune-suppressive environment, while the low-PCD group shows better responses to PD-1 treatment. In particular, TOP2A emerged as crucial, with its inhibition markedly reducing KIRC cell growth and mobility. These findings underscore the relevance of PCDs in predicting KIRC outcomes and immunotherapy response, with implications for enhancing clinical decision-making.

2.
J Cancer ; 15(6): 1734-1749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370377

RESUMO

Background: Bladder cancer (BLCA) is the most common genitourinary malignancy. Proliferation essential genes (PEGs) are crucial to the survival of cancer cells. This study aimed to build a PEG signature to predict BLCA prognosis and treatment efficacy. Methods: BLCA PEGs and differentially expressed PEGs were identified using DepMap and TCGA-BLCA datasets, respectively. Based on the prognostic analysis of the differentially expressed PEGs, a PEG model was constructed. Subsequently, we analyzed the relationship between the PEG signature and prognosis of BLCA patients as well as their response to chemotherapy. Finally, we performed random forest analysis to target and functional experiments to validate the most significant PEG which is associated with BLCA progression. CCK-8, invasion, migration, and chemosensitivity assays were performed to assess effects of gene knockdown on BLCA cell proliferation, invasion and migration abilities, and cisplatin chemosensitivity. Results: We screened 10 prognostic PEGs from 201 differentially expressed PEGs and used them to construct a PEG signature model. Patients with high PEG signature score (PEGs-high) exhibited worse OS and lower sensitivity to chemotherapy than those with PEGs-low. We also found significant correlations between the PEG score and previously defined BLCA molecular subtypes. This suggests that the PEG score may effectively predict the molecular subtypes which have distinct clinical outcomes. Random forest analysis revealed that POLE2 (DNA polymerase epsilon subunit 2) was the most significant PEG differentiating BLCA tissue and normal tissue. Bioinformatic analysis and an immunohistochemistry staining assay confirmed that POLE2 was significantly up-regulated in tumor tissues and was associated with poor survival in BLCA patients. Moreover, POLE2 knockdown inhibited the ability of cell clone formation, proliferation, invasion, immigration and IC50 of cisplatin. Conclusion: The PEG signature acts as a potential predictor for prognosis and chemotherapy response in BLCA patients. POLE2 is a key PEG and plays a remarkable role in promoting the malignant progression and cisplatin resistance of BLCA.

3.
Aging (Albany NY) ; 16(5): 4378-4395, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38407971

RESUMO

Lung adenocarcinoma (LUAD) is one of the most common malignant tumors worldwide. Small Ubiquitin-like Modifier (SUMO)-ylation plays a crucial role in tumorigenesis. However, the SUMOylation pathway landscape and its clinical implications in LUAD remain unclear. Here, we analyzed genes involved in the SUMOylation pathway in LUAD and constructed a SUMOylation pathway signature (SUMOPS) using the LASSO-Cox regression model, validated in independent cohorts. Our analysis revealed significant dysregulation of SUMOylation-related genes in LUAD, comprising of favorable or unfavorable prognostic factors. The SUMOPS model was associated with established molecular and histological subtypes of LUAD, highlighting its clinical relevance. The SUMOPS stratified LUAD patients into SUMOPS-high and SUMOPS-low subtypes with distinct survival outcomes and adjuvant chemotherapy responses. The SUMOPS-low subtype showed favorable responses to adjuvant chemotherapy. The correlations between SUMOPS scores and immune cell infiltration suggested that patients with the SUMOPS-high subtype exhibited favorable immune profiles for immune checkpoint inhibitor (ICI) treatment. Additionally, we identified UBA2 as a key SUMOylation-related gene with an increased expression and a poor prognosis in LUAD. Cell function experiment confirmed the role of UBA2 in promoting LUAD cell proliferation, invasion, and migration. These findings provide valuable insights into the SUMOylation pathway and its prognostic implications in LUAD, paving the way for personalized treatment strategies and the development of novel therapeutic targets.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Sumoilação , Prognóstico , Imunoterapia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Enzimas Ativadoras de Ubiquitina/genética
4.
Cancer ; 130(S8): 1435-1448, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358781

RESUMO

BACKGROUND: Patients with triple-positive breast cancer (TPBC) have a higher risk of recurrence and lower survival rates than patients with other luminal breast cancers. However, there are few studies on the predictive biomarkers of prognosis and treatment responses in TPBC. METHODS: Proliferation essential genes (PEGs) were acquired from clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) technology, and cohorts of patients with TPBC were obtained from public databases and our cohort. To develop a TPBC-PEG signature, Cox regression and least absolute shrinkage and selection operator regression analyses were applied. Functional analyses were performed with gene set enrichment analysis. The relationship between candidate genes and neoadjuvant chemotherapy (NACT) sensitivity was explored via real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) on the basis of clinical samples. RESULTS: Among 900 TPBC-PEGs, 437 showed significant differential expression between TPBC and normal tissues. Three prognostic PEGs (actin-like 6A [ACTL6A], chaperonin containing TCP1 subunit 2 [CCT2], and threonyl-TRNA synthetase [TARS]) were identified and used to construct the PEG signature. Patients with high PEG signature scores exhibited a worse overall survival and lower sensitivity to NACT than patients with low PEG signature scores. RT-qPCR results indicated that ACTL6A and CCT2 expression were significantly upregulated in patients who lacked sensitivity to NACT. IHC results showed that the ACTL6A protein was highly expressed in patients with NACT resistance and nonpathological complete responses. CONCLUSIONS: This efficient PEG signature prognostic model can predict the outcomes of TPBC. Furthermore, ACTL6A expression level was associated with the response to NACT, and could serve as an important factor in predicting prognosis and drug sensitivity of patients with TPBC.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Actinas/genética , Genes Essenciais , Terapia Neoadjuvante/métodos , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/uso terapêutico , Proteínas de Ligação a DNA/genética
5.
Methods ; 222: 100-111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228196

RESUMO

BACKGROUND: Breast cancer (BC), the most common form of malignant cancer affecting women worldwide, was characterized by heterogeneous metabolic disorder and lack of effective biomarkers for diagnosis. The purpose of this study is to search for reliable metabolite biomarkers of BC as well as triple-negative breast cancer (TNBC) using serum metabolomics approach. METHODS: In this study, an untargeted metabolomics technique based on ultra-high performance liquid chromatography combined with mass spectrometry (UHPLC-MS) was utilized to investigate the differences in serum metabolic profile between the BC group (n = 53) and non-BC group (n = 57), as well as between TNBC patients (n = 23) and non-TNBC subjects (n = 30). The multivariate data analysis, determination of the fold change and the Mann-Whitney U test were used to screen out the differential metabolites. Additionally, machine learning methods including receiver operating curve analysis and logistic regression analysis were conducted to establish diagnostic biomarker panels. RESULTS: There were 36 metabolites found to be significantly different between BC and non-BC groups, and 12 metabolites discovered to be significantly different between TNBC and non-TNBC patients. Results also showed that four metabolites, including N-acetyl-D-tryptophan, 2-arachidonoylglycerol, pipecolic acid and oxoglutaric acid, were considered as vital biomarkers for the diagnosis of BC and non-BC with an area under the curve (AUC) of 0.995. Another two-metabolite panel of N-acetyl-D-tryptophan and 2-arachidonoylglycerol was discovered to discriminate TNBC from non-TNBC and produced an AUC of 0.965. CONCLUSION: This study demonstrated that serum metabolomics can be used to identify BC specifically and identified promising serum metabolic markers for TNBC diagnosis.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/diagnóstico , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem , Detecção Precoce de Câncer , Metabolômica/métodos , Biomarcadores , Biomarcadores Tumorais
6.
Luminescence ; 39(1): e4620, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933617

RESUMO

Rapid and accurate identification of tumor metabolic markers is important for early tumor diagnosis and individualized treatment. Here, a stable monodisperse sub-nanometer platinum (Pt) material was developed as a highly efficient nanozyme with a specific activity of peroxidase as high as 20.86 U mg-1 through the growth of in situ domain-limited Pt quantum dots via the polymer polyvinylpyrrolidone. Further, the synthesis of large quantities of Pt-loaded SiO2 (Pt-SiO2 ) was determined by silylation reaction and used for naked eye colorimetric testing of human alpha-fetoprotein (AFP). In particular, the immunization incubation process occurred in preprepared microplates. A nanozyme-based immunomodel was constructed in the presence of the target AFP, and a chromogenic reaction occurred with exogenous hydrogen peroxide and the chromogenic substrate tetramethylbenzidine. On optimization of experimental conditions, the dynamic working response range for AFP was found to be 0.05-20 ng mL-1 , with a limit of detection of 38.7 pg mL-1 . This work provides a new strategy to design efficient nanozyme-based enzyme-linked immunochromatographic platforms to meet the practical use of replacing natural enzymes.


Assuntos
Imunoadsorventes , Neoplasias , Humanos , Platina/química , alfa-Fetoproteínas , Dióxido de Silício/química , Peroxidase , Ensaio de Imunoadsorção Enzimática , Peróxido de Hidrogênio/química , Colorimetria/métodos
7.
Am J Cancer Res ; 13(9): 4087-4100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818084

RESUMO

Gastric cancer peritoneal metastases (GCPM) are a leading cause of death in gastric cancer patients. In this study, we focused on the expression of cyclin-dependent protein kinases (CDK), essential regulators of transcription, metabolism, and cell differentiation, in GCPM. Utilizing the GSE62254 cohort, we established a CDK signature (CDKS) model comprising ten CDK gene family members. Analysis of both the GSE62254 and TCGA cohorts revealed that patients with low CDKS had a worse prognosis compared to those with high CDKS. Furthermore, patients with high CDKS demonstrated positive responses from immunotherapy, as observed in the KIM cohort. We investigated the association between CDKS and the tumor microenvironment, including immune escape mechanisms. Immunohistochemistry analysis revealed a positive correlation between CDK5 and PD-L1 expression in gastric cancer. Furthermore, we found that CDK5 knockdown led to the inhibition of PD-L1 expression in gastric cancer cells. Our findings highlight the potential of CDKS as a prognostic biomarker and an indicator of immunotherapy response in gastric cancer patients. Moreover, our study suggests that targeting CDK5 could provide a new pathway for exploring immunotherapeutic research.

8.
J Cell Mol Med ; 27(22): 3578-3590, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37605453

RESUMO

Gastric cancer peritoneal metastases (GCPM) is a leading cause of GC-related death. Early detection of GCPM is critical for improving the prognosis of advanced GC. Differentially expressed genes (DEGs) were identified in the GSE62254 database to distinguish between GCPM and non-GCPM. The gastric cancer peritoneal metastases signature (GCPMs) was developed using DEGs. We analysed the effectiveness of GCPMs as indicators for prognosis, chemotherapy, and immune therapy response in GC patients. Subsequently, we analysed the correlation between GCPMs and immune microenvironment as well as immune escape in GC patients. Random forest model and immunohistochemistry was utilized to identify the crucial genes that can aid in the diagnosis of GCPM. We identified five DEGs and utilized their expression to construct GCPMs. Patients with high GCPMs had a higher likelihood of a poor prognosis, while those with low GCPMs appeared to potentially benefit more from chemotherapy. GCPMs were a dependable marker for predicting the response to immunotherapy. Additionally, GCPMs was found to be significantly linked to stromal score and cancer-associated fibroblasts. SYNPO2 has been identified as the gene with the highest significance in the diagnosis of GCPM. Immunohistochemistry suggests that SYNPO2-positive expression in tumour cells, fibroblasts, inflammatory cell may be associated with promoting peritoneal metastasis in GC. GCPMs have shown to be a promising biomarker for predicting the prognosis and response of GC patients to chemotherapy and immunotherapy. The use of GCPMs for individual tumour evaluation may pave the way for personalized treatment for GC patients in the future.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/terapia , Imunoterapia , Peritônio , Microambiente Tumoral/genética
9.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-37539552

RESUMO

N6-methyladenosine modification and lncRNAs are closely related to the prognosis and immunotherapy response of breast cancer patients. LncRNAs related to m6 A-associated genes were predicted based on coexpression analysis of the TCGA database. We established a novel 7-m6 A-associated lncRNA signature for predicting patient prognosis and validated it. The model was significantly correlated with survival time and survival status and was an independent predictor of overall survival (OS). Except for the M1 disease group, the model had good predictive value for OS in different subgroups. We constructed a prognostic model based on 7 m6 A-associated lncRNAs in breast cancer. This model could serve as an independent prognostic factor with tremendous predictive ability for breast cancer patients.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Bases de Dados Factuais
10.
Am J Cancer Res ; 13(6): 2269-2284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424798

RESUMO

Liver cancer is a prevalent type of tumor worldwide. CRISPR-Cas9 technology can be utilized to identify therapeutic targets for novel therapeutic approaches. In this study, our goal was to identify key genes related to the survival of hepatocellular carcinoma (HCC) cells by analyzing the DepMap database based on CRISPR-Cas9. We screened candidate genes associated with HCC cell survival and proliferation from DepMap and identified their expression levels in HCC from the TCGA database. To develop a prognostic risk model based on these candidate genes, we performed WGCNA, functional pathway enrichment analysis, protein interaction network construction, and LASSO analysis. Our findings show that 692 genes were critical for HCC cell proliferation and survival, and among them, 571 DEGs were identified in HCC tissues. WGCNA categorized these 584 genes into three modules, and the blue module consisting of 135 genes was positively linked to the tumor stage. Using the MCODE approach in Cytoscape, we identified ten hub genes in the PPI network, and through Cox univariate analysis and Lasso analysis, we developed a prognostic model consisting of three genes (SFPQ, SSRP1, and KPNB1). Furthermore, knocking down SFPQ inhibited HCC cell proliferation, migration, and invasion. In conclusion, we identified three core genes (SFPQ, SSRP1, and KPNB1) that are essential for the proliferation and survival of HCC cells. These genes were used to develop a prognostic risk model, and knockdown of SFPQ was found to inhibit the proliferation, migration, and invasion of HCC cells.

11.
Front Pharmacol ; 13: 981201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386179

RESUMO

Background: FNDC5 belongs to the family of proteins called fibronectin type III domain-containing which carry out a variety of functions. The expression of FNDC5 is associated with the occurrence and development of tumors. However, the role of FNDC5 in gastric cancer remains relatively unknown. Methods: In the research, the expression of FNDC5 and its value for the prognosis of gastric cancer patients were observed with the TCGA database and GEO datasets of gastric cancer patients. The role of FNDC5 in the regulation of gastric cancer cells proliferation, invasion, and migration was determined. WGCNA and Enrichment analysis was performed on genes co-expressed with FNDC5 to identify potential FNDC5-related signaling pathways. Meanwhile, the LASSO Cox regression analysis based on FNDC5-related genes develops a risk score to predict the survival of gastric cancer patients. Results: The expression of FNDC5 was decreased in gastric cancer tissues compared to normal gastric tissues. However, survival analysis indicated that lower FNDC5 mRNA levels were associated with better overall survival and disease-free survival in gastric cancer patients. Meanwhile, a significant negative correlation was found between FNDC5 and the abundance of CD4+ memory T cells in gastric cancer. In vitro overexpression of FNDC5 inhibits the migration and invasion of gastric cancer cells, without affecting proliferation. Finally, A two-gene risk score module based on FNDC5 co-expressed gene was built to predict the overall clinical ending of patients. Conclusion: FNDC5 is low expressed in gastric cancer and low FNDC5 predicts a better prognosis. The better prognosis of low FNDC5 expression may be attributed to the increased number of CD4+ memory activated T-cell infiltration in tumors, but the exact mechanism of the effect needs to be further explored. Overexpressing FNDC5 inhibits the invasion and migration of gastric cancer but does not affect proliferation. At last, we constructed a clinical risk score model composed of two FNDC5-related genes, and this model may help lay the foundation for further in-depth research on the individualized treatment of gastric cancer patients.

12.
Biology (Basel) ; 11(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36290392

RESUMO

Gastric cancer (GC) is a common upper gastrointestinal tumor. Death-associated protein kinase (DAPK1) was found to participate in the development of various malignant tumors. However, there are few reports on DAPK1 in gastric cancer. In this study, the TCGA and GEO datasets were used to explore the expression and role of DAPK1 in gastric cancer. The functions of DAPK1 in gastric cancer were determined by proliferation, migration and invasion assays. In addition, genes co-expressed with DAPK1 in gastric cancer were estimated through the WGCNA and correlation analysis. A DAPK1-related gene prognostic model was constructed using the Cox regression and lasso analyses. The expression of DAPK1 was significantly up-regulated in gastric cancer tissues. Kaplan-Meier analysis showed that low expression of DAPK1 was a favorable prognostic factor of overall survival and disease-free survival for gastric cancer patients. Functional experiments demonstrated that DAPK1 can promote the migration and invasion of gastric cancer cells. WGCNA, correlation analysis, Cox regression, and lasso analyses were applied to construct the DAPK1-related prognostic model. The prognostic value of this prognostic model of DAPK1-related genes was further successfully validated in an independent database. Our results indicated that DAPK1 can promote gastric cancer cell migration and invasion and established four DAPK1-related signature genes for gastric cancer that could independently predict the survival of GC patients.

13.
Front Oncol ; 12: 934128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992780

RESUMO

Background: Renal cell carcinoma (RCC) is the seventh most common cancer in humans, of which clear cell renal cell carcinoma (ccRCC) accounts for the majority. Recently, although there have been significant breakthroughs in the treatment of ccRCC, the prognosis of targeted therapy is still poor. Leukemia inhibitory factor (LIF) is a pleiotropic protein, which is overexpressed in many cancers and plays a carcinogenic role. In this study, we explored the expression and potential role of LIF in ccRCC. Methods: The expression levels and prognostic effects of the LIF gene in ccRCC were detected using TCGA, GEO, ICGC, and ArrayExpress databases. The function of LIF in ccRCC was investigated using a series of cell function approaches. LIF-related genes were identified by weighted gene correlation network analysis (WGCNA). GO and KEGG analyses were performed subsequently. Cox univariate and LASSO analyses were used to develop risk signatures based on LIF-related genes, and the prognostic model was validated in the ICGC and E-MTAB-1980 databases. Then, a nomogram model was constructed for survival prediction and validation of ccRCC patients. To further explore the drug sensitivity between LIF-related genes, we also conducted a drug sensitivity analysis based on the GDSC database. Results: The mRNA and protein expression levels of LIF were significantly increased in ccRCC patients. In addition, a high expression of LIF has a poor prognostic effect in ccRCC patients. LIF knockdown can inhibit the migration and invasion of ccRCC cells. By using WGCNA, 97 LIF-related genes in ccRCC were identified. Next, a prognostic risk prediction model including eight LIF-related genes (TOB2, MEPCE, LIF, RGS2, RND3, KLF6, RRP12, and SOCS3) was developed and validated. Survival analysis and ROC curve analysis indicated that the eight LIF-related-gene predictive model had good performance in evaluating patients' prognosis in different subgroups of ccRCC. Conclusion: Our study revealed that LIF plays a carcinogenic role in ccRCC. In addition, we firstly integrated multiple LIF-related genes to set up a risk-predictive model. The model could accurately predict the prognosis of ccRCC, which offers clinical implications for risk stratification, drug screening, and therapeutic decision.

14.
J Transl Med ; 20(1): 355, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962451

RESUMO

BACKGROUND: Osteosarcoma is one of the most malignant tumors, and it occurs mostly in children and adolescents. Currently, surgery and chemotherapy are the main treatments. The recurrence rate is high and the prognosis is often poor. Finding an effective target gene therapy for osteosarcoma may effectively improve its prognosis. METHOD: In this study, genes essential for the survival of osteosarcoma cells were identified by genome-wide screening of CRISPR-Cas9 based on the DepMap database. The expression of these essential genes in osteosarcoma patients' tissues and normal tissues was identified in the GSE19276 database. Functional pathway enrichment analysis, protein interaction network construction, and LASSO were performed to construct a prognostic risk model based on these essential genes. CCK8 assay was used to detect the effect of essential gene-LARS (Leucyl-TRNA Synthetase 1) on the proliferation of osteosarcoma. RESULTS: In this study, 785 genes critical for osteosarcoma cell proliferation were identified from the DepMap. Among these 785 essential genes, 59 DEGs were identified in osteosarcoma tissues. In the functional enrichment analysis, these 59 essential genes were mainly enriched in cell cycle-related signaling pathways. Furthermore, we established a risk score module, including LARS and DNAJC17, screened from these 59 genes, and this module could divide osteosarcoma patients into the low-risk and high-risk groups. In addition, knockdown of LARS expression inhibited the proliferative ability of osteosarcoma cells. A significant correlation was found between LARS expression and Monocytic lineage, T cells, and Fibroblasts. CONCLUSION: In conclusion, LARS was identified as an essential gene for survival in osteosarcoma based on the DepMap database. Knockdown of LARS expression significantly inhibited the proliferation of osteosarcoma cells, suggesting that it is involved in the formation and development of osteosarcoma. The results are useful as a foundation for further studies to elucidate a potential osteosarcoma diagnostic index and therapeutic targets.


Assuntos
Neoplasias Ósseas , Leucina-tRNA Ligase/genética , Osteossarcoma , Adolescente , Neoplasias Ósseas/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Genes Essenciais , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia
15.
Front Mol Biosci ; 9: 813428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211510

RESUMO

Background: The genome-wide CRISPR-cas9 dropout screening has emerged as an outstanding approach for characterization of driver genes of tumor growth. The present study aims to investigate core genes related to clear cell renal cell carcinoma (ccRCC) cell viability by analyzing the CRISPR-cas9 screening database DepMap, which may provide a novel target in ccRCC therapy. Methods: Candidate genes related to ccRCC cell viability by CRISPR-cas9 screening from DepMap and genes differentially expressed between ccRCC tissues and normal tissues from TCGA were overlapped. Weighted gene coexpression network analysis, pathway enrichment analysis, and protein-protein interaction network analysis were applied for the overlapped genes. The least absolute shrinkage and selection operator (LASSO) regression was used to construct a signature to predict the overall survival (OS) of ccRCC patients and validated in the International Cancer Genome Consortium (ICGC) and E-MTAB-1980 database. Core protein expression was determined using immunohistochemistry in 40 cases of ccRCC patients. Results: A total of 485 essential genes in the DepMap database were identified and overlapped with differentially expressed genes in the TCGA database, which were enriched in the cell cycle pathway. A total of four genes, including UBE2I, NCAPG, NUP93, and TOP2A, were included in the gene signature based on LASSO regression. The high-risk score of ccRCC patients showed worse OS compared with these low-risk patients in the ICGC and E-MTAB-1980 validation cohort. UBE2I was screened out as a key gene. The immunohistochemistry indicated UBE2I protein was highly expressed in ccRCC tissues, and a high-level nuclear translocation of UBE2I occurs in ccRCC. Based on the area under the curve (AUC) values, nuclear UBE2I had the best diagnostic power (AUC = 1). Meanwhile, the knockdown of UBE2I can inhibit the proliferation of ccRCC cells. Conclusion: UBE2I, identified by CRISPR-cas9 screening, was a core gene-regulating ccRCC cell viability, which accumulated in the nucleus and acted as a potential novel promising diagnostic biomarker for ccRCC patients. Blocking the nuclear translocation of UBE2I may have potential therapeutic value with ccRCC patients.

16.
Front Oncol ; 12: 972969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698419

RESUMO

Background: The clinical outcome of triple-negative breast cancer (TNBC) is poor. Finding more targets for the treatment of TNBC is an urgent need. SENPs are SUMO-specific proteins that play an important role in SUMO modification. Among several tumor types, SENPs have been identified as relevant biomarkers for progression and prognosis. The role of SENPs in TNBC is not yet clear. Methods: The expression and prognosis of SENPs in TNBC were analyzed by TCGA and GEO data. SENP3 coexpression regulatory networks were determined by weighted gene coexpression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and Cox univariate analyses were used to develop a risk signature based on genes associated with SENP3. A time-dependent receiver operating characteristic (ROC) analysis was employed to evaluate a risk signature's predictive accuracy and sensitivity. Moreover, a nomogram was constructed to facilitate clinical application. Results: The prognostic and expression effects of SENP family genes were validated using the TCGA and GEO databases. SENP3 was found to be the only gene in the SENP family that was highly expressed and associated with an unfavorable prognosis in TNBC patients. Cell functional experiments showed that knockdown of SENP3 leads to growth, invasion, and migration inhibition of TNBC cells in vitro. By using WGCNA, 273 SENP3-related genes were identified. Finally, 11 SENP3-related genes were obtained from Cox univariate analysis and LASSO regression. Based on this, a prognostic risk prediction model was established. The risk signature of SENP3-related genes was verified as an independent prognostic marker for TNBC patients. Conclusion: Among SENP family genes, we found that SENP3 was overexpressed in TNBC and associated with a worse prognosis. SENP3 knockdown can inhibit tumor proliferation, invasion, and migration. In TNBC patients, a risk signature based on the expression of 11 SENP3-related genes may improve prognosis prediction. The established risk markers may be promising prognostic biomarkers that can guide the individualized treatment of TNBC patients.

17.
Front Cell Dev Biol ; 9: 729211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621746

RESUMO

Background: Triple-negative breast cancer (TNBC) is the most invasive and metastatic subtype of breast cancer. SUMO1-activating enzyme subunit 1 (SAE1), an E1-activating enzyme, is indispensable for protein SUMOylation. SAE1 has been found to be a relevant biomarker for progression and prognosis in several tumor types. However, the role of SAE1 in TNBC remains to be elucidated. Methods: In the research, the mRNA expression of SAE1 was analyzed via the cancer genome atlas (TCGA) and gene expression omnibus (GEO) database. Cistrome DB Toolkit was used to predict which transcription factors (TFs) are most likely to increase SAE1 expression in TNBC. The correlation between the expression of SAE1 and the methylation of SAE1 or quantity of tumor-infiltrating immune cells was further invested. Single-cell analysis, using CancerSEA, was performed to query which functional states are associated with SAE1 in different cancers in breast cancer at the single-cell level. Next, weighted gene coexpression network (WGCNA) was applied to reveal the highly correlated genes and coexpression networks of SAE1 in TNBC patients, and a prognostic model containing SAE1 and correlated genes was constructed. Finally, we also examined SAE1 protein expression of 207 TNBC tissues using immunohistochemical (IHC) staining. Results: The mRNA and protein expression of SAE1 were increased in TNBC tissues compared with adjacent normal tissues, and the protein expression of SAE1 was significantly associated with overall survival (OS) and disease-free survival (DFS). Correlation analyses revealed that SAE1 expression was positively correlated with forkhead box M1 (FOXM1) TFs and negatively correlated with SAE1 methylation site (cg14042711) level. WGCNA indicated that the genes coexpressed with SAE1 belonged to the green module containing 1,176 genes. Through pathway enrichment analysis of the module, 1,176 genes were found enriched in cell cycle and DNA repair. Single-cell analysis indicated that SAE1 and its coexpression genes were associated with cell cycle, DNA damage, DNA repair, and cell proliferation. Using the LASSO COX regression, a prognostic model including SAE1 and polo-like kinase 1 (PLK1) was built to accurately predict the likelihood of DFS in TNBC patients. Conclusion: In conclusion, we comprehensively analyzed the mRNA and protein expression, prognosis, and interaction genes of SAE1 in TNBC and constructed a prognostic model including SAE1 and PLK1. These results might be important for better understanding of the role of SAE1 in TNBC. In addition, DNA methyltransferase and TFs inhibitor treatments targeting SAE1 might improve the survival of TNBC patients.

18.
Front Mol Biosci ; 8: 649100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422899

RESUMO

The death associated protein kinases (DAPKs) are a family of calcium dependent serine/threonine kinases initially identified in the regulation of apoptosis. Previous studies showed that DAPK family members, including DAPK1, DAPK2 and DAPK3 play a crucial regulatory role in malignant tumor development, in terms of cell apoptosis, proliferation, invasion and metastasis. Accumulating evidence has demonstrated that non-coding RNAs, including microRNA (miRNA), long non-coding RNA (lncRNA) and circRNA, are involved in the regulation of gene expression and tumorigenesis. Recent studies indicated that non-coding RNAs participate in the regulation of DAPKs. In this review, we summarized the current knowledge of non-coding RNAs, as well as the potential miRNAs, lncRNAs and circRNAs, that are involved in the regulation of DAPKs.

19.
Gland Surg ; 10(3): 1067-1084, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33842251

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive disease. Developing new candidate biomarkers for chemotherapy response and possible therapeutic targets has become an urgent clinical need. Small ubiquitin-like modifiers (SUMOs) mediate post-translational modifications (SUMOylation) has been shown to be involved in numerous biological processes. However, the role of SUMOylation in TNBC has yet to be elucidated. METHOD: The mRNA expression of SUMO1/2/3 was analyzed by the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO) databases (N=412). We also evaluated the SUMO1/2/3 protein expression in 212 TNBC patients using immunohistochemical (IHC) staining method. A classifier with Least absolute shrinkage and selection operator (LASSO) Cox regression model was then built based on the associations between the expression of SUMO1/2/3 proteins and the disease-free survival (DFS) of TNBC patients. RESULTS: Elevated SUMO1/2/3 levels were indicated to be associated with a poorer overall survival (OS) and DFS for TNBC patients. With the LASSO model, we built a classifier based on the IHC scores of SUMO1/2/3 proteins and named it the 'SB classifier'. Patients with SB classifier-defined high score were found to have an unfavorable response to chemotherapy [hazard ratio (HR) 4.04, 95% confidence interval (CI): 2.14-7.63; P<0.0001]. A nomogram was then developed to identify which patients might benefit from chemotherapy. Finally, our results also suggested that the activation of SUMOylation pathway in TNBC might be induced by MYC signaling. CONCLUSIONS: We constructed a reliable prognostic and predictive tool for TNBC patients treated with chemotherapy, which could facilitate individualized counseling and management.

20.
Front Oncol ; 11: 782755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993142

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) accounts for 60-70% of renal cell carcinoma (RCC) cases. Finding more therapeutic targets for advanced ccRCC is an urgent mission. The minichromosome maintenance proteins 2-7 (MCM2-7) protein forms a stable heterohexamer and plays an important role in DNA replication in eukaryotic cells. In the study, we provide a comprehensive study of MCM2-7 genes expression and their potential roles in ccRCC. METHODS: The expression and prognosis of the MCM2-7 genes in ccRCC were analyzed using data from TCGA, GEO and ArrayExpress. MCM2-7 related genes were identified by weighted co-expression network analysis (WGCNA) and Metascape. CancerSEA and GSEA were used to analyze the function of MCM2-7 genes in ccRCC. The gene effect scores (CERES) of MCM2-7, which reflects carcinogenic or tumor suppressor, were obtained from DepMap. We used clinical and expression data of MCM2-7 from the TCGA dataset and the LASSO Cox regression analysis to develop a risk score to predict survival of patients with ccRCC. The correlations between risk score and other clinical indicators such as gender, age and stage were also analyzed. Further validation of this risk score was engaged in another cohort, E-MTAB-1980 from the ArrayExpress dataset. RESULTS: The mRNA and protein expression of MCM2-7 were increased in ccRCC compared with normal tissues. High MCM2, MCM4, MCM6 and MCM7 expression were associated with a poor prognosis of ccRCC patients. Functional enrichment analysis revealed that MCM2-7 might influence the progress of ccRCC by regulating the cell cycle. Knockdown of MCM7 can inhibit the proliferation of ccRCC cells. A two-gene risk score including MCM4 and MCM6 can predict overall survival (OS) of ccRCC patients. The risk score was successfully verified by further using Arrayexpress cohort. CONCLUSION: We analyze MCM2-7 mRNA and protein levels in ccRCC. MCM7 is determined to promote tumor proliferation. Meanwhile, our study has determined a risk score model composed of MCM2-7 can predict the prognosis of ccRCC patients, which may help future treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...