Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758771

RESUMO

The measurement of the pole axis deviation angle of superconducting magnetic levitation rotors plays a crucial role in the field of high-precision navigation. This article conducts theoretical analysis and experimental research on the diffuse reflection intensity modulation principle of optical fiber sensors and the ideal diffuse reflection modulation model under ideal conditions. First, the structural distribution of optical fiber sensors is presented, and the principle of measuring the polar deviation angle of superconducting magnetic levitation rotors is analyzed. Then, based on the diffuse reflection intensity modulation principle, an optical fiber intensity modulation model for ideal superconducting magnetic levitation rotors is established. The correctness of this model was verified through simulation and calibration experiments, and the error between the simulation and experimental results was less than 8%.

2.
Sci Rep ; 14(1): 8949, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637606

RESUMO

REBCO has been used extensively as coated conductors applied to superconducting magnets due to its exceptional superconducting properties. As a REBCO superconductor, YbBa2Cu3O7-y (Yb123) has a low melting temperature, making it suitable for use as an intermediate medium connector while preparing the superconducting joint. However, there is still uncertainty about the formation mechanism of Yb123 and the synthesis of this superconductor has not been fully understood. Therefore, this study systematically investigated the phase transformation process of Yb123 during heat treatment in flowing oxygen. The results indicated that Yb123 sample with the highest phase purity could be obtained by annealing at 927 °C or 937 °C but not in between, respectively. Furthermore, a quantitative phase analysis revealed that the sample annealed at 937 °C had a phase purity greater than 80 wt%. Additionally, a strong c-axis texture was observed in the bulk Yb123 superconductor prepared at 937 °C. Meanwhile, the superconducting results revealed that the bulk sample's Tc was 89.9 K, and its self-field critical current densities at 4.2 K and 77 K were 1.3 × 105 A/cm2 and 5.0 × 103 A/cm2, respectively. Based on the results mentioned above, the phase transformation process and formation mechanism of Yb123 in flowing oxygen were elaborated.

3.
Heliyon ; 10(4): e25992, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370170

RESUMO

Centrifugal blood pumps are important devices used to treat heart failure. However, they are prone to high-risk suction events that pose a threat to human health when operating at high speeds. To address these issues, a normal suction detection method and a suction suppression method based on the FFT-GAPSO-LSTM model and speed modulation were proposed. The innovation of this suction detection method lies in the application of the genetic particle swarm optimisation (GAPSO) and the fast Fourier transform (FFT) feature extraction method to the long-term and short-term memory (LSTM) model, thereby improving the accuracy of suction detection. After detecting signs of suction, the suction suppression method designed in this study based on variable-speed modulation immediately takes effect, enabling the centrifugal blood pump to quickly return to its normal state by controlling the speed. The suction detection method was divided into four steps. First, a mathematical model of the coupling of the cardiovascular system and the centrifugal blood pump was established, and a real-time blood flow curve was obtained through model simulation. Second, the signal was preprocessed by adding Gaussian white noise and low-pass filtering to make the blood flow signal close to actual working conditions while retaining the original characteristics. Subsequently, through fast Fourier transform (FFT) analysis of the processed curve, the spectral characteristics that can characterise the working state of the centrifugal blood pump were extracted. Finally, the parameters of the LSTM model were optimised using the GAPSO, and the improved LSTM model was used to train and test the blood flow spectrum feature set. The results show that the suction detection method of the FFT-GAPSO-LSTM model can effectively detect whether centrifugal blood pump suction occurs and has certain advantages over other methods. In addition, the simulation results of the suction suppression were excellent and could effectively suppress the occurrence of suction. These results provide a reference for the design of centrifugal blood pump control systems.

4.
Magn Reson Imaging ; 106: 77-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939971

RESUMO

The design of radiofrequency (RF) coils is crucial for ultra-high field (UHF) magnetic resonance imaging (MRI) systems. To analyze RF coils, various numerical methods, such as finite-difference time-domain (FDTD) and method of moments (MoM), are usually adopted. In this paper, we present a novel hybrid approach that combines a two-dimensional (2D) FDTD with a three-dimensional (3D) MoM to analyze MRI RF problems. In our algorithm, the MoM is utilized for calculating the coil current, and FDTD is assigned for solving the electromagnetic (EM) fields in the imaging region. The hybrid method achieves superior efficiency and acceptable accuracy than using either method individually. To validate the hybrid method, we analyze an ellipse coil loaded with a uniform phantom and a realistic human head model, with the objective of tailoring the magnetic field intensity by adding a multilayer dielectric pad (DP). The results show an improvement in the magnetic field after optimizing the DP configuration. These simulation studies indicate the potential of the new numerical method for the design and analysis of RF systems for ultra-high field applications.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Campos Eletromagnéticos , Imagens de Fantasmas , Ondas de Rádio , Desenho de Equipamento
5.
J Magn Reson ; 358: 107612, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118321

RESUMO

Floating cable traps (FCTs) enhance coil tuning, improve the signal-to-noise ratio of magnetic resonance imaging (MRI), and reduce the risks to patients. As MRI technology continues to advance, it becomes crucial to design efficient FCTs that are tailored to different magnetic fields and nuclei. Here, a method is proposed for determining and correcting the appropriate capacitances for FCTs in MRI systems. To validate the effectiveness of this approach, FCTs were designed and manufactured for hydrogen nuclei in magnetic fields of 1.5-14 T. The results of bench testing show that the attenuation of common-mode currents was more than -20 dB, and the maximum frequency deviation in all the FCTs was 0.345%. Furthermore, the results of magnetic resonance spin-echo imaging show that the signal-to-noise ratio was improved significantly by using the FCTs. Overall, this study shows the effectiveness of the designed FCTs in improving signal-to-noise ratio, and it provides valuable insights for designing efficient FCTs tailored to different magnetic fields and nuclei in MRI applications.

6.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081291

RESUMO

The extremely high field has significant advantages in imaging quality and analyzing the fine structure of substances. However, its excellent performance requires the support of a higher-performance shim technique. In this paper, a novel structural design pattern of the shim coil for a 27 T extremely high field superconducting magnet is proposed. According to the contours of the stream function, we designed and optimized the shim coil pattern and engineering processing. The novel design was realized by using the contours as the centerline, and the wire spacing was controlled at 1 mm. The performance of the novel pattern was compared with those of alternative winding schemes. The results indicate that the novel design can improve coil performance, achieving higher fidelity and lower power dissipation.

7.
Sci Rep ; 13(1): 18929, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919348

RESUMO

In this paper, we proposed a sliding mode control method for the bearingless permanent magnet slice motor for the blood pump based on the genetic particle swarm algorithm, which aims to solve the problems of strong coupling, strong interference, nonlinearity and uncertainty. Firstly, the mathematical model of rotor torque and suspension force of the bearingless permanent magnet slice motor is established. Secondly, the structure of sliding mode observer is deduced by designing sliding mode surface and control law. And, the performance parameters of sliding mode observer are optimized by the genetic particle swarm optimization algorithm. Thirdly, electromagnetic torque and suspension force control under this control method is studied by Simulink. Finally, the control method is applied to the control of the blood flow of the blood pump, and the rotation speed can effectively control the blood flow. The results indicate that compared with PID control and traditional sliding mode control methods, the sliding mode control method optimized by the genetic particle swarm optimization algorithm greatly improves the control performance of bearingless permanent magnet slice motor. The results show that the blood flow can meet expectations with a small error, which fully meets the blood perfusion requirements of the blood pump.


Assuntos
Imãs , Rotação , Torque , Incerteza
8.
Front Bioeng Biotechnol ; 11: 1167340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139045

RESUMO

Introduction: Titanium (Ti) and Ti-based alloy materials are commonly used to develop artificial hearts. To prevent bacterial infections and thrombus in patients with implanted artificial hearts, long-term prophylactic antibiotics and anti-thrombotic drugs are required, and this may lead to health complications. Therefore, the development of optimized antibacterial and antifouling surfaces for Ti-based substrate is especially critical when designing artificial heart implants. Methods: In this study, polydopamine and poly-(sulfobetaine methacrylate) polymers were co-deposited to form a coating on the surface of Ti substrate, a process initiated by Cu2+ metal ions. The mechanism for the fabrication of the coating was investigated by coating thickness measurements as well as Ultraviolet-visible and X-ray Photoelectron (XPS) spectroscopy. Characterization of the coating was observed by optical imaging, scanning electron microscope (SEM), XPS, atomic force microscope (AFM), water contact angle and film thickness. In addition, antibacterial property of the coating was tested using Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as model strains, while the material biocompatibility was assessed by the antiplatelet adhesion test using platelet-rich plasma and in vitro cytotoxicity tests using human umbilical vein endothelial cells and red blood cells. Results and discussion: Optical imaging, SEM, XPS, AFM, water contact angle, and film thickness tests demonstrated that the coating was successfully deposited on the Ti substrate surface. The biocompatibility and antibacterial assays showed that the developed surface holds great potential for improving the antibacterial and antiplatelet adhesion properties of Ti-based heart implants.

9.
Magn Reson Imaging ; 102: 1-8, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36963640

RESUMO

Accurate design and analysis of radiofrequency (RF) coils are crucial for ultra-high field (UHF) magnetic resonance imaging (MRI) applications. To improve the numerical accuracy of electromagnetic (EM) simulations, we propose a hybrid finite difference time domain (FDTD)/method of moments (MoM) method. Unlike conventional cuboid-like Huygens' equivalent surfaces (HES), we proposed to use a conformal HES to interface the EM data of the FDTD and MoM zone. The shape and size of the conformal surface can be adjusted to fit different RF coil models, thus broadening the application range of the hybrid FDTD/MoM method. Two numerical models: an 8-channel ellipse array, and an 8-channel bent dipole array, are simulated and compared with the conventional HES counterpart. Numerical results demonstrate the capability of the conformal HES method in the analysis of RF coils.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Imagens de Fantasmas , Campos Eletromagnéticos
10.
Magn Reson Imaging ; 96: 75-84, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36265697

RESUMO

In ultra-high-field (UHF) magnetic resonance imaging (MRI) applications, the design and analysis of high-frequency radio frequency (RF) coils requires full-wave electromagnetic (EM) methods that can handle complex field-tissue interactions. Using a Huygens' equivalent surface, the Method of Moments (MoM) and the Finite-Difference Time-Domain (FDTD) algorithm can be combined to accurately model the high-frequency RF coils. In previous research, a uniform FDTD mesh structure was considered, providing a compromised solution for coil-tissue interactions. This paper proposes a hybrid FDTD/MoM algorithm with non-uniform meshes. The fine mesh domain is set at the Huygens' surface, and the other domain uses coarse meshes. The proposed algorithms are strictly validated, and their computational performance is compared against conventional methods. Results show that the new algorithm can improve the calculation efficiency without losing accuracy. Specifically, compared with the uniform FDTD method, the numerical difference between both hybrid methods remains at 3.2%. Still, the calculation time of the non-uniform grid algorithm is reduced by 64.2%, demonstrating the effectiveness of the new algorithm for modeling RF coils for UHF-MRI applications.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio , Imagens de Fantasmas , Campos Eletromagnéticos
11.
Magn Reson Med ; 88(6): 2732-2744, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063495

RESUMO

PURPOSE: In an MRI system, the static magnetic field homogeneity is strictly required especially in ultrahigh field situations. However, owing to the engineering tolerances and system errors, the magnetic field homogeneity of a magnet usually cannot meet the imaging requirement; thus, a shimming operation is always needed. METHODS: Existing passive shimming methods commonly minimize the peak-peak variations of the magnetic fields over the diameter of spherical volume (DSV), targeting the field quality of 10-20 parts per million (ppm). However, these conventional passive shimming methods can sometimes lead to sub-optimal field quality and iron consumption solutions. Notably, the RMS error (RMSE) value of the field uniformity is inherently unoptimized. This work proposed a novel passive shimming method that can deliver a significantly improved shimming solution by actively controlling the central magnetic field and specific magnetic field deviations in the region of interest. A detailed comparison between the conventional and proposed methods was conducted on a 9.4T human MRI superconducting magnet. RESULTS: The results showed that the new solution had a significant advantage in searching for superior magnetic field homogeneity with less iron piece consumption. Significantly, the RMSE value of the magnetic field over the DSV can be substantially reduced >10 times. The proposed algorithms are also very efficient, taking only several seconds to find the shimming solution. CONCLUSION: The potential of the magnetic field homogeneity improvement methods will promote the development of high-end MRI systems.


Assuntos
Campos Magnéticos , Imãs , Algoritmos , Humanos , Ferro , Imageamento por Ressonância Magnética/métodos
12.
Med Phys ; 49(11): 6813-6823, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087029

RESUMO

BACKGROUND/PURPOSES: Magnetic navigation capsule endoscopy (MNCE) is considered to be an important means to realize the controllable and precise examination of capsule endoscopy (CE) in the unstructured gastrointestinal (GI) tract. For the current magnetic navigation system (MNS), due to the limitation of workspace, driving force, and control method of the CE, only clinical application in the stomach has been realized, whereas the examination of other parts of the GI tract is still in the experimental stage. More preclinical studies are needed to achieve the multisite examination of the GI tract. METHODS: Based on the MNS (Supiee) developed in the laboratory, an X-ray imaging system with magnetic shielding and a commercial CE are integrated to form the MNCE system. Then, in vivo GI tract experiments with a porcine model are performed to verify the clinical feasibility and safety of this system. Moreover, the effects of different control modes on the efficiency and effect of GI tract examination are studied. RESULTS: Animal experiments demonstrate that with the MNCE system, it is convenient to achieve steering control in any direction and multiple reciprocating movements of CE in the GI tract. Benefiting from the flexibility of the three basic control modes, the achieved swing movement pattern of CE can effectively reduce the inspection time. It is demonstrated that the esophageal examination time can be reduced from 13.2 to 9.2 min with a maximum movement speed of 5 mm/s. CONCLUSION: In this paper, the feasibility, safety, and efficacy of the MNCE system for a one-stop examination of the in vivo GI tract (esophagus, stomach, and colorectum) is first demonstrated. In addition, complex movement patterns of CE such as the swinging are proved to effectively improve examination efficiency and disease detection rates. This study is crucial for the clinical application of the MNCE system.


Assuntos
Cápsulas Endoscópicas , Projetos de Pesquisa , Suínos , Animais , Fenômenos Magnéticos
13.
Rev Sci Instrum ; 92(3): 034712, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820029

RESUMO

A volumetric finite-difference based method is presented in this paper for the design of three-dimensional (3D), arbitrarily structured gradient coils in magnetic resonance imaging. In the proposed method, the coil space is discretized with quasi-rectangular elements, and the current density of each element is expressed by a finite-difference based numerical approximation of stream functions. The magnetic flux density at target field points can be calculated by those stream function values at all grids of the coil space. The optimization problem is constructed and solved to determine the stream function and coil patterns. This proposed method has been tested on several designs that include a shielded, ultra-short cylindrical coil, a partially shielded biplanar coil, and an asymmetric head coil with 3D geometries. The numerical results show that the proposed method is straightforward to implement and is versatile and suitable for designing complex structured gradient coils with high electromagnetic performance.

14.
Microsc Microanal ; 26(3): 365-372, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32321618

RESUMO

Advanced Ni8W/Ni12W/Ni8W alloy composite substrates used in YBCO-coated conductors with a strong cube texture and high yield strength have been fabricated, and a CeO2 buffer layer film was successfully deposited on the composite substrates. Through in situ tensile testing coupled with electron backscattered diffraction (EBSD) analysis, the stability of the cube texture of Ni8W/Ni12W/Ni8W alloy composite substrates has been investigated. The stress-strain curve shows that the yield strength (at 0.2% strain) of the composite substrates exceeds 250 Mpa. The orientation of grains and boundaries on the surface of the substrates was almost unchanged, while the strain exceeds 0.2%, which indicated that the composite substrates are adequate for depositing buffer layers and YBCO layers by the reel-to-reel process.

15.
Med Phys ; 47(3): 1126-1138, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31856301

RESUMO

PURPOSE: The magnetic resonance imaging (MRI)-Linac system combines a MRI scanner and a linear accelerator (Linac) to realize real-time localization and adaptive radiotherapy for tumors. Given that the Australian MRI-Linac system has a 30-cm diameter of spherical volume (DSV) with a shimmed homogeneity of ±4.05 parts per million (ppm), a gradient nonlinearity (GNL) of <5% can only be assured within 15 cm from the system's isocenter. GNL increases from the isocenter and escalates close to and outside of the edge of the DSV. Gradient nonlinearity can cause large geometric distortions, which may provide inaccurate tumor localization and potentially degrade the radiotherapy treatment. In this study, we aimed to characterize and correct the geometric distortions both inside and outside of the DSV. METHODS: On the basis of phantom measurements, an inverse electromagnetic (EM) method was developed to reconstitute the virtual current density distribution that could generate gradient fields. The obtained virtual EM source was capable of characterizing the GNL field both inside and outside of the DSV. With the use of this GNL field information, our recently developed "GNL-encoding" reconstruction method was applied to correct the distortions implemented in the k-space domain. RESULTS: Both phantom and in vivo human images were used to validate the proposed method. The results showed that the maximal displacements within an imaging volume of 30 cm × 30 cm × 30 cm after using the fifth-order spherical harmonic (SH) method and the proposed method were 6.1 ± 0.6 mm and 1.8 ± 0.6 mm, respectively. Compared with the fifth-order SH-based method, the new solution decreased the percentage of markers (within an imaging volume of 30 cm × 30 cm × 30 cm) with ≥1.5-mm distortions from 6.3% to 1.3%, indicating substantially improved geometric accuracy. CONCLUSIONS: The experimental results indicated that the proposed method could provide substantially improved geometric accuracy for the region outside of the DSV, when comparing with the fifth-order SH-based method.


Assuntos
Fenômenos Eletromagnéticos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas , Humanos , Pelve/diagnóstico por imagem
16.
IEEE Trans Biomed Eng ; 67(8): 2328-2336, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31841398

RESUMO

In a planar, superconducting magnetic resonance imaging (MRI) system, the gradient assembly is placed into the groove of the SC magnet. Conventional gradient coil design method considers the shielding of pole face only, but neglects the surrounding metal structures at the coil side, thus leading to large stray field leakage and resulting in serious eddy current artefact. A novel coil shielding method was proposed in this work by a full consideration of the stray fields on the pole face and also the coil ends. The gradient coil design exemplification of a 0.7T planar superconducting MRI system was presented. In the new design, the maximum stray field at the surface of the ambient structure was reduced more than six times for the transverse coils and around four times for the longitudinal coil. The highly shielded gradient coil also produced linear gradient fields (<5%) over the imaging volume.


Assuntos
Imageamento por Ressonância Magnética , Supercondutividade , Artefatos , Desenho de Equipamento , Vibração
17.
Rev Sci Instrum ; 90(9): 094705, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575265

RESUMO

Superconducting shim coils are frequently used in high-field magnetic resonance imaging or nuclear magnetic resonance system for their high sensitivity and shimming strength. The design of superconducting shim coils is based on the spherical harmonic decomposition, and each shim coil is normally dedicated for correcting one specific harmonic component. Conventional superconducting shim coil with a saddle loop has observable winding error near the corner, which gives rise to arc transformation when winding layer by layer. Simulation analysis shows that the arc corner transformation will induce the magnetic field deviation by more than double of the theoretical design ±1%, which may be up to ±3% after real winding. An improved shim coil design method with a quasisaddle geometry was proposed to correct the winding error. With the consideration of both the rounded corner of the saddle loop and the arc side, the new design offers the magnetic field deviation within ±1%. In addition to reducing the winding error, the proposed design also facilitates the winding process.

18.
IEEE Trans Biomed Eng ; 66(12): 3339-3345, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30872215

RESUMO

The head gradient coil is advantageous for brain imaging compared to the conventional whole-body gradient coil. It is usually asymmetrically designed for the accommodation of human shoulders. The asymmetric head coil has a specific issue associated with an unbalanced force/torque that requires minimization for imaging applications. This paper will improve the force and torque balance solution and propose a dichotomization winding scheme to augment the coil slew rate. A square force and torque optimization enables the available balanced asymmetric head gradient coil design, with a force and torque approaching the minimum level. Subsequently, two practical parallel connection winding schemes were quantitatively analyzed and evaluated. The results show that the proposed dichotomization winding scheme can increase the slew rate to almost twice that of the conventional winding counterpart, without obviously influencing the magnetic field performance.


Assuntos
Desenho de Equipamento/métodos , Imageamento por Ressonância Magnética/instrumentação , Cabeça/diagnóstico por imagem , Humanos , Campos Magnéticos , Torque
19.
Adv Mater ; 31(11): e1807240, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30614584

RESUMO

The extraordinary superconductivity has been observed in a pressurized commercial niobium-titanium alloy. Its zero-resistance superconductivity persists from ambient pressure to the pressure as high as 261.7 GPa, a record-high pressure up to which a known superconducting state can continuously survive. Remarkably, at such an ultra-high pressure, although the ambient pressure volume is shrunk by 45% without structural phase transition, the superconducting transition temperature (TC ) increases to ≈19.1 K from ≈9.6 K, and the critical magnetic field (HC2 ) at 1.8 K has been enhanced to 19 T from 15.4 T. These results set new records for both the TC and the HC2 among all the known alloy superconductors composed of only transition metal elements. The remarkable high-pressure superconducting properties observed in the niobium-titanium alloy not only expand the knowledge on this important commercial superconductor but also are helpful for a better understanding on the superconducting mechanism.

20.
Rev Sci Instrum ; 89(9): 095110, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30278720

RESUMO

In planar magnetic resonance imaging (MRI) systems, gradient coils are usually placed within a very limited space owing to the physical constraints of the small gap size (pole-pole) distance of the permanent magnet. Typically, the unshielded or partially shielded design scheme is adopted to generate required magnetic fields with reduced system costs. However, non-fully shielded coils can induce large eddy currents on the surrounding metal structures, including magnet poles, that significantly impact the imaging performance. This paper elaborates a new design strategy to resolve the limited space problem. Using the peripheral sections of the MRI system, a set of actively shielded gradient coils are purposefully designed. Between the two magnet poles, the actively shielded gradient coils occupy merely four coil layers (six coil layers are usually required), which offers an excellent shielding effect, thus reducing the image distortions. The saved space can be used to integrate a high-efficient cooling system. Moreover, the design scheme does not significantly increase the fabricating complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...