Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 9061-9080, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571148

RESUMO

Blind image deconvolution plays a very important role in the fields such as astronomical observation and fluorescence microscopy imaging, in which the noise follows Poisson distribution. However, due to the ill-posedness, it is a very challenging task to reach a satisfactory result from a single blurred image especially when the power of the Poisson noise is at a high level. Therefore, in this paper, we try to achieve high-quality restoration results with multi-blurred images which are contaminated by Poisson noise. Firstly, we design a novel sparse log-step gradient prior which adopts a mixture of logarithm and step functions to regularize the image gradients and combine it with the Poisson distribution to formulate the blind multi-image deconvolution problem. Secondly, we incorporate the methods of variable splitting and Lagrange multiplier to convert the original problem into sub-problems, then we alternately solve them to achieve the estimation of all the blur kernels of corresponding blurred images. Besides, we also design a non-blind multi-image deconvolution algorithm which is based on the log-step gradient prior to reach the final restored image. Experimental results on both synthetic and real-world blurred images show that the proposed prior is very capable of suppressing negative artifacts caused by ill-posedness. The algorithm can achieve restored image of very high quality which is competitive with some state-of-the-art methods.

2.
Adv Sci (Weinh) ; : e2401657, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647365

RESUMO

The engineering of ferroic orders, which involves the evolution of atomic structure and local ferroic configuration in the development of next-generation electronic devices. Until now, diverse polarization structures and topological domains are obtained in ferroelectric thin films or heterostructures, and the polarization switching and subsequent domain nucleation are found to be more conducive to building energy-efficient and multifunctional polarization structures. In this work, a continuous and periodic strain in a flexible freestanding BaTiO3 membrane to achieve a zigzag morphology is introduced. The polar head/tail boundaries and vortex/anti-vortex domains are constructed by a compressive strain as low as ≈0.5%, which is extremely lower than that used in epitaxial rigid ferroelectrics. Overall, this study c efficient polarization structures, which is of both theoretical value and practical significance for the development of next-generation flexible multifunctional devices.

3.
Mar Pollut Bull ; 198: 115883, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056294

RESUMO

Heavy metals play a significant role in marine ecosystems, exerting notable impacts on the environment and human health. In this study, water, sediment, and aquatic organism samples from Jiaozhou Bay were investigated to comprehensively assess the distribution, temporal-spatial variations, and ecological risks of heavy metals. The results indicate that pollution from industrial wastewater discharge contributes to regional differences in the distribution of heavy metals, possibly being a major source of Zn, Cr, Cd, and Hg (r > 0.7, p < 0.05). Biological and physicochemical processes influence the distribution of Zn, Cr, and Pb in the water and sediment. Hg exhibits a polluted state in both the water and sediment, with As and Hg being the two highest-risk heavy metals in water and sediment, respectively. Among the organisms, crustaceans show significantly higher levels of heavy metal content and accumulation compared to mollusks and fish (p < 0.05), and the bioamplification of heavy metals occurs in the sediment-Rapana venosa-Portunus trituberculatus biological pathway. Portunus trituberculatus, Charybdis japonica, Oratosquilla oratoria, and Octopus ocellatus could pose risks to human health, especially for children and vulnerable populations. This study aims to enhance our understanding of the current status of heavy metal pollution in Jiaozhou Bay and to provide a scientific basis and favorable support for the ecological environmental protection and prevention of ecological risks associated with heavy metal pollution in Jiaozhou Bay and other bays in China.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Animais , Criança , Humanos , Baías/química , Sedimentos Geológicos/química , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco , Metais Pesados/análise , Água , China
4.
Mar Biotechnol (NY) ; 26(1): 74-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153607

RESUMO

The study aimed to compare the effects of crystalline L-lysine and L-glutamate (CAA), Lys-Glu dipeptide (KE) on the growth and muscle development of grass carp (Ctenopharyngodon idellus), and related molecular mechanisms. Five experimental diets (CR, 0.5% CAA, 1.5% CAA, 0.5% KE, 1.5% KE) containing Lys and Glu as free (Lys and Glu, CAA) dipeptide (Lys-Glu, KE) forms were prepared, respectively. A total of 450 juvenile grass carp with an initial weight of 10.69 ± 0.07 g were randomly assigned to 15 cages, and 5 treatments with 3 replicates of 30 fish each for 61 days of feeding. The results showed that the group of 0.5% KE exhibited the best growth performances according to the indicator's weight gain rate (WGR) and specific growth rate (SGR), although no statistically significant occurred among all groups; diet supplemented with 0.5% CAA significantly elevated the condition factor (CF) and viscerasomatic index (VSI) of juvenile grass carp. Diet supplemented with different Lys and Glu co-forms at different levels promoted the muscle amino acid content compared with those of CR group. Comparing with the CR group and other groups, the hardness of 0.5% CAA group significantly increased, and the springiness of 0.5% KE group excelled. Both the muscle fiber diameter and density of 0.5% KE group showed significant difference with those of the CR group, and a negative correlation between them was also observed. To uncover the related molecular mechanism of the differences caused by the different co-forms of Lys and Glu, the effect of different diets on the expressions of protein absorption, muscle quality, and antioxidation-related genes was analyzed. The results suggested that comparing with those of CR group, the dipeptide KE inhibited the expressions of genes associated with protein metabolism, such as AKT, S6K1, and FoxO1a but promoted PCNA expression, while the free style of CAA would improve the FoxO1a expression. Additionally, the muscle development-related genes (MyoD, MyOG, and Myf5) were significantly boosted in CAA co-form groups, and the expressions of fMYHCs were blocked but fMYHCs30 significantly promoted in 0.5% KE group. Finally, the effect of different co-forms of Lys and Glu on muscle antioxidant was examined. The 0.5% CAA diet was verified to increase GPX1a but obstruct Keap1 and GSTP1 expressions, resulting in enhanced SOD activity and reduced MDA levels in plasma. Collectively, the different co-forms of Lys and Glu influenced the growth of juvenile grass carp, and also the muscle development and quality through their different regulation on the protein metabolism, muscle development- and antioxidative-related genes.


Assuntos
Antioxidantes , Carpas , Animais , Antioxidantes/metabolismo , Lisina , Ácido Glutâmico , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Carpas/genética , Carpas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Dieta/veterinária , Dipeptídeos/genética , Dipeptídeos/metabolismo , Expressão Gênica , Ração Animal/análise , Proteínas de Peixes/genética
5.
Sci Adv ; 9(15): eadf3737, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37043569

RESUMO

Energy-efficient, healthy lighting is vital for human beings. Incandescent lighting provides high-fidelity color rendering and ergonomic visual comfort yet is phased out owing to low luminous efficacy (15 lumens per watt) and poor lifetime (2000 hours). Here, we propose and experimentally realize a photon-recycling incandescent lighting device (PRILD) with a luminous efficacy of 173.6 lumens per watt (efficiency of 25.4%) at a power density of 277 watts per square centimeter, a color rendering index (CRI) of 96, and a LT70-rated lifetime of >60,000 hours. The PRILD uses a machine learning-designed 637-nm-thick visible-transparent infrared-reflective filter and a Janus carbon nanotube/hexagonal boron nitride filament to recycle 92% of the infrared radiation. The PRILD has higher luminous efficacy, CRI, and lifetime compared with solid-state lighting and thus is promising for high-power density lighting.

6.
ACS Appl Mater Interfaces ; 15(13): 17309-17316, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36949634

RESUMO

Most recently, the freestanding of an epitaxial single-crystal oxide has been greatly developed to its fundamental concerns and the possibility of integration with metal, two-dimensional, and organic materials for more promising functionalities. In an artificial ferromagnetic oxide heterostructure and superlattice, the release of the substrate constraint can induce a reasonable transformation of the magnetic structure because the change of the lattice field occurs. In this study, we have comprehensively investigated the evolution of magnetic properties of (La0.7Ca0.3MnO3/SrRuO3)n [(LCMO/SRO)n] ferromagnetic superlattices while they are epitaxially on SrTiO3 and freestanding. It is found that the Curie temperature and the perpendicular exchange bias of the freestanding superlattices exhibit extreme sensitivity to the interface number and the thickness of LCMO and SRO, which can maximumly reach ∼293 K and ∼1150 Oe. These enhanced and bulk-beyond magnetic behaviors originate from the interfacial magnetic transition from ferromagnetic to antiferromagnetic via the charge reconstruction with the assistance of strain. Our study provides not only a reference for designing a high-performance flexible ferromagnetic architectural superlattice but also a deep understanding of the interfacial effect in freestanding ferromagnetic heterostructures benefiting flexible spintronics.

7.
Nano Lett ; 23(4): 1144-1151, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36749930

RESUMO

Thermophotovoltaic (TPV) generators provide continuous and high-efficiency power output by utilizing local thermal emitters to convert energy from various sources to thermal radiation matching the bandgaps of photovoltaic cells. Lack of effective guidelines for thermal emission control at high temperatures, poor thermal stability, and limited fabrication scalability are the three key challenges for the practical deployment of TPV devices. Here we develop a hierarchical sequential-learning optimization framework and experimentally realize a 6″ module-scale polaritonic thermal emitter with bandwidth-controlled thermal emission as well as excellent thermal stability at 1473 K. The 300 nm bandwidth thermal emission is realized by a complex photon polariton based on the superposition of Tamm plasmon polariton and surface plasmon polariton. We experimentally achieve a spectral efficiency of 65.6% (wavelength range of 0.4-8 µm) with statistical deviation less than 4% over the 6″ emitter, demonstrating industrial-level reliability for module-scale TPV applications.

8.
Adv Sci (Weinh) ; 10(13): e2207128, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828784

RESUMO

In an electrocatalytic process, the cognition of the active phase in a catalyst has been regarded as one of the most vital issues, which not only boosts the fundamental understanding of the reaction procedure but also guides the engineering and design for further promising catalysts. Here, based on the oxygen evolution reaction (OER), the stepwise evolution of the dominant active phase is demonstrated in the LaNiO3 (LNO) catalyst once the single-crystal thin film is decorated by LNO nanoparticles. It is found that the OER performance can be dramatically improved by this decoration, and the catalytic current density at 1.65 V can be enhanced by ≈1000% via ≈109 cm-2 nanoparticle adhesion after extracting the contribution of surface enlargement. Most importantly, a transition of the active phase from LNO to NiOOH via surface reconstruction with the density of LNO nanoparticles is demonstrated. Several mechanisms in terms of this active phase transition are discussed involving lattice orientation-induced change of the surface energy profile, the lattice oxygen participation, and the A/B-site ions leaching during OER cycles. This study suggests that the active phases in transition metal-based OER catalysts can transform with morphology, which should be corresponding to distinct engineering strategies.

9.
Sci Rep ; 13(1): 3147, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823189

RESUMO

Based on the velocity and temperature data recorded by two acoustic Doppler current profilers (ADCPs) at a mooring system deployed in the northern South China Sea (SCS), this study investigates the characteristics of near-inertial waves (NIWs) induced by typhoons Bebinca, Barijat, Mangkhut and Yutu in 2018. For the dynamical response, besides the motion of near inertial frequency induced by typhoons, the motion of 2 f ([1.80-2.20] f, f is the local inertial frequency) and f D1 (a harmonic wave with a frequency equal to the sum of frequencies of NIWs and diurnal tides) frequency will also increase. For near-inertial motions, the maximum near-inertial kinetic energy (NIKE) is confined to depths above 150 m. For stronger (weaker) wind forcing, the longer (shorter) the response time of the ocean to the atmospheric forcing is, and the shorter (longer) the response time is required in relaxation stage. There are upward and downward propagating energies after the passage of typhoons, and the upward propagating energy mainly occur in the stage of the geostrophic balance adjustment. The current structure suggests that the NIWs in the vertical direction are two antisymmetric rotary vortices in a near-inertial period, which is similar to the structure of the Langmuir circulation. Besides, the horizontal near-inertial currents (NICs) are much stronger than the vertical NICs, and the stronger the NIWs are, the stronger the horizontal NICs relative to the vertical NICs are. For the temperature response, the temperature variation reflects a clear stratified vertical structure. In the forcing stage, the upper layer becomes colder, the lower layer becomes warmer, and the thickness and intensity of the thermocline decrease. In the relaxation stage, the upper layer warms and the lower layer cools, and the thickness and intensity of thermocline increase.

10.
Nano Lett ; 22(21): 8526-8533, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36302098

RESUMO

Development of a refractory selective solar absorber (RSSA) is the key to unlock high-temperature solar thermal and thermochemical conversion. The fundamental challenge of RSSA is the lack of design and fabrication guidelines to simultaneously achieve omnidirectional, broadband solar absorption and sharp spectral selectivity at the desired cutoff wavelength. Here, we realize a ruthenium-carbon nanotube (Ru-CNT) nanocomposite RSSA with multiscale nanoparticle-on-nanocavity plasmonic modes. Ru conformally coated on the sidewalls of CNTs enables a spoof surface plasmon polariton mode for spectra selectivity; Ru nanoparticles formed at the tips of CNTs enable a localized surface plasmon resonance mode and plasmon hybridization for omnidirectional broadband solar absorption. The fabricated Ru-CNT RSSA has a total solar absorption (TSA) of 96.1% with sharp spectral cutoff at 2.21 µm. The TSA is maintained at over 90% for an incident angle of 56°. Our findings therefore guide full-spectrum optical and thermal control from visible to the far-infrared.

11.
Ann Oper Res ; : 1-20, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35694372

RESUMO

A dramatic shift from offline to online has happened in consumer behavior, leading to enterprises ploughing a large number of digital advertisements to capture consumers' attention online. To evaluate the effectiveness of different online advertising, we explore the dynamic impacts of nine different online channels on the transition of consumers' potential purchase intention and the consumer behavior. We use a continuous-time hidden Markov model (CT-HMM) to capture the transfer path of consumers who are affected by various online channels. Our findings reveal that online advertising has a positive and statistically significant impact on the transition of consumer purchase intention, of which search advertising can significantly increase consumers' propensity to purchase, and its effect on transferring consumers from high to low purchase intention is not very strong in comparison. However, consumers have a very low annoyance threshold to short messaging service (SMS) advertising, and they are easy to get tired of SMS advertising and transfer to low purchase intention. Most firm-initiated advertising is more likely to transfer consumers to a low purchase intention state. Advertisements which can not improve consumer purchase intention very well have fewer stimulating effects on consumers' information collection behavior than other advertisements. Our research contributes to the literature on the effectiveness of online advertising and provide some management insights for enterprises.

12.
ACS Appl Mater Interfaces ; 13(24): 28583-28592, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110139

RESUMO

Bundling of single-walled carbon nanotubes (SWCNTs) significantly undermines their superior thermal and electrical properties. Realizing stable, homogeneous, and surfactant-free dispersion of SWCNTs in solvents and composites has long been regarded as a key challenge. Here, we report amine-containing aromatic and cyclohexane molecules, which are common chain extenders (CEs) for epoxy curing in industry, can be used to effectively disperse CNTs. We achieve single-tube-level dispersion of SWCNTs in CE solvents, as demonstrated by the strong chirality-dependent absorption and photoluminescence emission. The SWCNT-CE dispersion remains stable under ambient conditions for months. The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH-π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is confirmed by the negative Seebeck coefficient of the CE-functionalized SWCNT films, the red shift of the G band in the Raman spectra, and the NH-π peak in X-ray photoelectron spectroscopy. The high dispersibility of CEs significantly improves the electrical and thermal transport of macroscale CNT assemblies. The sheet resistance of the CE-dispersed SWCNT thin films reaches 161 Ω sq-1 at 80.8% optical transmittance after functional modification by HNO3. Moreover, the CEs cross-link CNTs and epoxy molecules, forming a pathway for phonon transport in CNT/epoxy nanocomposites. The thermal conductivity of the CE-CNT-epoxy composite is enhanced by 1850% compared with the original epoxy, which is the highest enhancement reported to date for CNT/epoxy nanocomposites. The CE-based NH-π interaction provides a new paradigm for the effective and stable dispersion of SWCNTs in a facile and scalable process.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33023179

RESUMO

In many developing countries, the existence of the uncertified recycler seriously hinders the healthy development of the waste electrical and electronic equipment (WEEE or e-waste) recycling industry. As a result, how the government can regulate the uncertified recycler to improve environment and public health during the recycling processes has become a critical issue. To help tackle this issue, we build an evolutionary game model to study the interactions between the government and the uncertified recycler. We conduct stability analysis of each participant and obtain four asymptotically stable states. Furthermore, we conduct numerical simulations for comparative analysis based on the current situation of the Chinese e-waste recycling industry. Our results are as follows. First, there exist multiple asymptotically stable states for the government and the uncertified recycler, namely (no-governance, maintaining status quo), (governance, maintaining status quo), (governance, industrial upgrading), and (no-governance, industrial upgrading). Then, we verify the validity of the evolutionary game model through numerical simulations and find that penalty, supervision cost, additional investment cost, and financial subsidy can significantly influence the behavioral strategy of the government and the uncertified recycler. Finally, we find that the government should adopt the reward-penalty-supervision mechanism to promote the healthy development of the e-waste recycling industry and protect the environment and public health. Specifically, first, the government's subsidy for the uncertified recycler has upper and lower limits. Exceeding the upper limit will result in an excessive financial burden to the government, while falling below the lower limit will hinder the uncertified recycler from technology upgrading. Second, the government should strengthen the supervision of the uncertified recycler and increase the punishment for violations. Third, the government should focus on controlling the supervision cost. Fourth, according to the asymptotically stable state (no-governance, industrial upgrading), the government should prepare to withdraw from the market when the uncertified recycler chooses industrial upgrading.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , China , Governo , Humanos , Reciclagem
14.
Nano Lett ; 20(11): 7874-7881, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33078949

RESUMO

A simple, fast, and contactless alternative for the generation of nanodroplets in solution is to apply light to stimulate their formation at a surface. In this work, a light-driven mechanism for the generation of nanodroplets is demonstrated by using a porous membrane. The membrane is placed at the interface between oil and water during the nanodroplet generation process. As light illuminates the membrane a photothermal conversion process induces the growth and release of water vapor bubbles into the aqueous phase. This release leads to the fluctuation of local pressure around the pores and enables the generation of oil nanodroplets. A computational simulation of the fluid dynamics provides insight into the underlying mechanism and the extent to which it is possible to increase nanodroplet concentrations. The ability to form nanodroplets in solutions without the need for mechanical moving parts is significant for the diverse biomedical and chemical applications of these materials.

15.
Biomed Opt Express ; 10(4): 1613-1626, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31086696

RESUMO

Digital holographic microscopy (DHM) as a label-free quantitative imaging tool has been widely used to investigate the morphology of living cells dynamically. In the off-axis DHM, the spatial filtering in the frequency spectrum of the hologram is vital to the quality of the reconstructed images. In this paper, we propose an adaptive spatial filtering approach based on convolutional neural networks (CNN) to automatically extracts the optimal shape of frequency components. For achieving robust and precise recognition performance, the net model is trained by using the tens of thousands of frequency spectrums with a variety of specimens and imaging conditions. The experimental results demonstrate that the trained network produce an adaptive spatial filtering window which can accurately select the frequency components of the object term and eliminate the frequency components of the interference terms, especially the coherent noise that overlaps with the object term in the spatial frequency domain. We find that the proposed approach has a fast, robust, and outstanding frequency filtering capability without any manual intervention and initial input parameters compared to previous techniques. Furthermore, the applicability of the proposed method in off-axis DHM for dynamic analysis is demonstrated by real-time monitoring the morphologic changes of living MLO-Y4 cells that are constantly subject to Fluid Shear Stress (FSS).

16.
Front Neurosci ; 13: 1387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009877

RESUMO

The goal of network representation learning, also called network embedding, is to encode the network structure information into a continuous low-dimensionality embedding space where geometric relationships among the vectors can reflect the relationships of nodes in the original network. The existing network representation learning methods are always single-task learning, in which case these methods focus on preserving the proximity of nodes from one aspect. However, the proximity of nodes is dependent on both the local and global structure, resulting in a limitation on the node embeddings learned by these methods. In order to solve this problem, in this paper, we propose a novel method, Multi-Task Learning-Based Network Embedding, termed MLNE. There are two tasks in this method so as to preserve the proximity of nodes. The aim of the first task is to preserve the high-order proximity between pairwise nodes in the whole network. The second task is to preserve the low-order proximity in the one-hop area of each node. By jointly learning these tasks in the supervised deep learning model, our method can obtain node embeddings that can sufficiently reflect the roles that nodes play in networks. In order to demonstrate the efficacy of our MLNE method over existing state-of-the-art methods, we conduct experiments on multi-label classification, link prediction, and visualization in five real-world networks. The experimental results show that our method performs competitively.

17.
Mar Pollut Bull ; 122(1-2): 65-76, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28633949

RESUMO

A habitat suitability index (HSI) model for the sea cucumber Apostichopus japonicus (Selenka) was established in the present study. Based on geographic information systems, the HSI model was used to identify potential sites around the Shandong Peninsula suitable for restoration of immature (<25g) and mature (>25g) A. japonicus. Six habitat factors were used as input variables for the HSI model: sediment classification, water temperature, salinity, water depth, pH and dissolved oxygen. The weighting of each habitat factor was defined through the Delphi method. Sediment classification was the most important condition affecting the HSI of A. japonicus in the different study areas, while water temperature was the most important condition in different seasons. The HSI of Western Laizhou Bay was relatively low, meaning the site was not suitable for aquaculture-based restoration of A. japonicus. In contrast, Xiaoheishan Island, Rongcheng Bay and Qingdao were preferable sites, suitable as habitats for restoration efforts.


Assuntos
Ecossistema , Pepinos-do-Mar , Animais , Aquicultura , China , Conservação dos Recursos Naturais , Stichopus
18.
Cancer Lett ; 385: 117-127, 2017 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-27810403

RESUMO

Emerging evidence has shown that miRNA-194 is aberrantly upregulated in gastric cancer (GC); however, the biological mechanisms underlying its involvement are largely unknown. Wnt/ß-catenin signaling has been implicated in gastric tumorigenesis; we therefore hypothesized that miRNA-194 promotes gastric carcinogenesis by activating Wnt/ß-catenin signaling. MiRNA-194 was found to be overexpressed in GC cell lines and 43 paired GC tissues. Overexpression of miRNA-194 promoted cell proliferation and migration, while inhibition of miRNA-194 blocked these processes. Inhibition of miRNA-194 decreased tumor volumes in nude mice. Furthermore, miRNA-194 inhibitors promoted cytoplasmic localization of ß-catenin, leading to repression of Wnt signaling. We also discovered that SUFU, a known negative regulator of Hedgehog and Wnt signaling, was a target of miRNA-194. Anti-SUFU siRNAs rescued the inhibitory effects of miRNA-194 antagonists on cell proliferation and migration and on colony formation. We also found that SUFU expression was downregulated in GC tissues and cell lines and negatively correlated with miRNA-194 expression in primary GC tissues. Moreover, SUFU expression was negatively correlated with tumor stage, supporting its potential as a diagnostic or prognostic marker in GC. Taken together, these findings suggest that miRNA-194 is oncogenic and promotes GC cell proliferation and migration by activating Wnt signaling, at least in part, via suppression of SUFU.


Assuntos
MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Invasividade Neoplásica , Estadiamento de Neoplasias , Oncogenes , Interferência de RNA , Proteínas Repressoras/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Tempo , Transfecção
19.
Heliyon ; 2(3): e00084, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27441262

RESUMO

Marine ecosystem services refer to benefits that people obtain from marine ecosystem. Understanding temporal evolution of these services is a fundamental challenge of natural resource management in marine ecosystems. Yellow Sea is one of the most intensely exploited shallow seas in the Northwest Pacific Ocean. In this study, we analyzed the value of the four classes services (provisioning services, regulating services, cultural services and supporting services, including 14 individual services) of the Yellow Sea on temporal scales. From 1980 to 2010, the total value of the four classes of services was between 297 and 2,232 billion RMB yuan. Only the proportion of cultural services as a percentage of the total value continued to increase for the entire period, from 0.9% in 1980 to 9.4% in 2010. Provisioning services reached their highest point at 18.4% in 2000, and then fell to 10.1% in 2010. Meanwhile, the percentage of regulating services and supporting services declined, falling from 14.4% and 79.4% in 1980 to 10.1% and 70.4% in 2010, respectively. This study represents the first attempt to analyze the temporal evolution of Yellow Sea ecosystem services. It will provide the theoretical basis for further study of the ecological mechanisms of marine ecosystem services.

20.
Sci Rep ; 6: 19219, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26753547

RESUMO

Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...