Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Angew Chem Int Ed Engl ; 63(28): e202405438, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682249

RESUMO

The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH- consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH- around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm-2 and stable operation over 100 hours at ~100 mA cm-2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.

2.
Inorg Chem ; 63(12): 5642-5651, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38469751

RESUMO

Urea oxidation reaction (UOR) is one of the potential routes in which urea-rich wastewater is used as a source of energy for hydrogen production. Metal-organic frameworks (MOFs) have promising applications in electrocatalytic processes, although there are still challenges in identifying the MOFs' molecular regulation and obtaining practical catalytic systems. The current study sought to synthesize [Zn6(IDC)4(OH)2(Hprz)2]n (Zn-MOF) with three symmetrically independent Zn(II) cations connected via linear N-donor piperazine (Hprz), rigid planar imidazole-4,5-dicarboxylate (IDC3-), and -OH ligands, revealing the 3,4T1 topology. The optimized noble-metal-free Zn0.33V0.66-MOF/NF electrocatalysts show higher robustness and performance compared to those of the parent Zn monometallic MOF/NF electrode and other bimetallic MOFs with different Zn-V molar ratios. The low potential of 1.42 V (vs RHE) at 50 mA cm-2 in 1.0 M KOH with 0.33 M urea required by the developed Zn0.33V0.66-MOF electrode makes its application in the UOR more feasible. The availability of more exposed active sites, ion diffusion path, and higher conductivity result from the distinctive configuration of the synthesized electrocatalyst, which is highly stable and capable of synergistic effects, consequently enhancing the desired reaction. The current research contributes to introducing a practical, cost-effective, and sustainable solution to decompose urea-rich wastewater and produce hydrogen.

3.
Nat Commun ; 15(1): 1264, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341446

RESUMO

Nitrate (NO3‒) pollution poses significant threats to water quality and global nitrogen cycles. Alkaline electrocatalytic NO3‒ reduction reaction (NO3RR) emerges as an attractive route for enabling NO3‒ removal and sustainable ammonia (NH3) synthesis. However, it suffers from insufficient proton (H+) supply in high pH conditions, restricting NO3‒-to-NH3 activity. Herein, we propose a halogen-mediated H+ feeding strategy to enhance the alkaline NO3RR performance. Our platform achieves near-100% NH3 Faradaic efficiency (pH = 14) with a current density of 2 A cm-2 and enables an over 99% NO3--to-NH3 conversion efficiency. We also convert NO3‒ to high-purity NH4Cl with near-unity efficiency, suggesting a practical approach to valorizing pollutants into valuable ammonia products. Theoretical simulations and in situ experiments reveal that Cl-coordination endows a shifted d-band center of Pd atoms to construct local H+-abundant environments, through arousing dangling O-H water dissociation and fast *H desorption, for *NO intermediate hydrogenation and finally effective NO3‒-to-NH3 conversion.

4.
Chem Commun (Camb) ; 60(23): 3129-3137, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38404151

RESUMO

Designing low-dimensional nanomaterials is vital to address the energy and environmental crisis by means of electrocatalytic conversion reactions. Bimetallenes, as an emerging class of 2D materials, present promise for electrocatalytic conversion reactions. By leveraging atomically thin layers, bimetallenes present unsaturated surface coordination, high specific surface area and high conductivity, which are all indispensable features for heterogeneous electrochemical reactions. However, the intrinsic activity and stability of bimetallenes needs to be improved further for bimetallene electrocatalysts, due to the higher demands of practical applications. Recently, many strategies have been developed to optimize the chemical or electronic structure to accommodate transfer of reactants, adsorption or desorption of intermediates, and dissociation of products. Considering that most such work focuses on adjusting the structure, this review offers in-depth insight into recent representative strategies for optimizing bimetallene electrocatalysts, mainly including alloying, strain effects, ligand effects, defects and heteroatom doping. Moreover, by summarizing the performance of bimetallenes optimized using various strategies, we provide a means to understand structure-property relationships. In addition, future prospects and challenges are discussed for further development of bimetallene electrocatalysts.

5.
J Am Chem Soc ; 146(1): 468-475, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150583

RESUMO

The in-tandem catalyst holds great promise for addressing the limitation of low *CO coverage on Cu-based materials for selective C2H4 generation during CO2 electroreduction. However, the potential mismatch between the CO-formation catalyst and the favorable C-C coupling Cu catalyst represents a bottleneck in these types of electrocatalysts, resulting in low tandem efficiencies. In this study, we propose a robust solution to this problem by introducing a wide-CO generation-potential window nickel single atom catalyst (Ni SAC) supported on a Cu catalyst. The selection of Ni SAC was based on theoretical calculations, and its excellent performance was further confirmed by using in situ IR spectroscopy. The facilitated carbon dimerization in our tandem catalyst led to a ∼370 mA/cm2 partial current density of C2H4, corresponding to a faradic efficiency of ∼62%. This performance remained stable and consistent for at least ∼14 h at a high current density of 500 mA/cm2 in a flow-cell reactor, outperforming most tandem catalysts reported so far.

6.
Adv Mater ; 35(21): e2300695, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929182

RESUMO

Main group single atom catalysts (SACs) are promising for CO2 electroreduction to CO by virtue of their ability in preventing the hydrogen evolution reaction and CO poisoning. Unfortunately, their delocalized orbitals reduce the CO2 activation to *COOH. Herein, an O doping strategy to localize electrons on p-orbitals through asymmetric coordination of Ca SAC sites (Ca-N3 O) is developed, thus enhancing the CO2 activation. Theoretical calculations indicate that asymmetric coordination of Ca-N3 O improves electron-localization around Ca sites and thus promotes *COOH formation. X-ray absorption fine spectroscopy shows the obtained Ca-N3 O features: one O and three N coordinated atoms with one Ca as a reactive site. In situ attenuated total reflection infrared spectroscopy proves that Ca-N3 O promotes *COOH formation. As a result, the Ca-N3 O catalyst exhibits a state-of-the-art turnover frequency of ≈15 000 per hour in an H-cell and a large current density of -400 mA cm-2 with a CO Faradaic efficiency (FE) ≥ 90% in a flow cell. Moreover, Ca-N3 O sites retain a FE above 90% even with a 30% diluted CO2 concentration.

7.
Small ; 19(23): e2208254, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36890786

RESUMO

This work reports a new form of tubular g-C3 N4 that is featured with a hierarchical core-shell structure introduced with phosphorous elements and nitrogen vacancies. The core is self-arranged with randomly stacked g-C3 N4 ultra-thin nanosheets along the axial direction. This unique structure significantly benefits electron/hole separation and visible-light harvesting. A superior performance for the photodegradation of rhodamine B and tetracycline hydrochloride is demonstrated under low intensity visible light. This photocatalyst also exhibits an excellent hydrogen evolution rate (3631 µmol h-1 g-1 ) under visible light. Realizing this structure just requires the introduction of phytic acid into the solution of melamine and urea during hydrothermal treatment. In this complex system, phytic acid plays as the electron donor to stabilize melamine/cyanuric acid precursor via coordination interaction. Calcination at 550 °C directly renders the transformation of precursor into such hierarchical structure. This process is facile and shows the strong potential toward mass production for real applications.

8.
ChemSusChem ; 16(12): e202202251, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-36820747

RESUMO

Electrochemical CO2 reduction reaction (CO2 RR) is crucial to addressing environmental crises and producing chemicals. Proton activation and transfer are essential in CO2 RR. To date, few research reviews have focused on this process and its effect on catalytic performance. Recent studies have demonstrated ways to improve CO2 RR by regulating proton transfer dynamics. This Concept highlights the use of regulating proton transfer dynamics to enhance CO2 RR for the target product and discusses modulation strategies for proton transfer dynamics and operative mechanisms in typical systems, including single-atom catalysts, molecular catalysts, metal heterointerfaces, and organic-ligand modified metal catalysts. Characterization methods for proton transfer dynamics during CO2 RR are also discussed, providing powerful tools for the hydrogen-involving electrochemical study. This Concept offers new insights into the CO2 RR mechanism and guides the design of efficient CO2 RR systems.


Assuntos
Dióxido de Carbono , Prótons , Hidrogênio , Catálise
9.
Nat Commun ; 13(1): 7596, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494381

RESUMO

Electrochemical CO2 reduction to multicarbon products faces challenges of unsatisfactory selectivity, productivity, and long-term stability. Herein, we demonstrate CO2 electroreduction in strongly acidic electrolyte (pH ≤ 1) on electrochemically reduced porous Cu nanosheets by combining the confinement effect and cation effect to synergistically modulate the local microenvironment. A Faradaic efficiency of 83.7 ± 1.4% and partial current density of 0.56 ± 0.02 A cm-2, single-pass carbon efficiency of 54.4%, and stable electrolysis of 30 h in a flow cell are demonstrated for multicarbon products in a strongly acidic aqueous electrolyte consisting of sulfuric acid and KCl with pH ≤ 1. Mechanistically, the accumulated species (e.g., K+ and OH-) on the Helmholtz plane account for the selectivity and activity toward multicarbon products by kinetically reducing the proton coverage and thermodynamically favoring the CO2 conversion. We find that the K+ cations facilitate C-C coupling through local interaction between K+ and the key intermediate *OCCO.


Assuntos
Dióxido de Carbono , Eletrólitos , Eletrólise , Prótons , Carbono
10.
Nat Commun ; 13(1): 6082, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241631

RESUMO

Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at -1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at -0.93 V versus RHE the cyano-modified catalyst enables a current density of -300 mA/cm2 with a FE above 90%.

11.
J Am Chem Soc ; 144(32): 14505-14516, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35920726

RESUMO

Electrosynthesis of hydrogen peroxide (H2O2) through oxygen reduction reaction (ORR) is an environment-friendly and sustainable route for obtaining a fundamental product in the chemical industry. Co-N4 single-atom catalysts (SAC) have sparkled attention for being highly active in both 2e- ORR, leading to H2O2 and 4e- ORR, in which H2O is the main product. However, there is still a lack of fundamental insights into the structure-function relationship between CoN4 and the ORR mechanism over this family of catalysts. Here, by combining theoretical simulation and experiments, we unveil that pyrrole-type CoN4 (Co-N SACDp) is mainly responsible for the 2e- ORR, while pyridine-type CoN4 catalyzes the 4e- ORR. Indeed, Co-N SACDp exhibits a remarkable H2O2 selectivity of 94% and a superb H2O2 yield of 2032 mg for 90 h in a flow cell, outperforming most reported catalysts in acid media. Theoretical analysis and experimental investigations confirm that Co-N SACDp─with weakening O2/HOO* interaction─boosts the H2O2 production.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Catálise
12.
Micromachines (Basel) ; 13(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630264

RESUMO

A novel interleaved DC-DC buck converter is proposed to drive high-brightness light-emitting diodes (LEDs). The circuit configuration mainly consists of two buck converters, which are connected in parallel and use interleaved operation. Through interleaved operation, the power capability of the converter is doubled. Traditionally, two individual inductors are used in the two buck converters. The difference between conventional parallel-operated buck converters using two energy storage inductors and the proposed circuit is that the proposed circuit uses two small inductors and a coupled inductor that replace the two inductors of the buck converters. In this way, both buck converters can be designed to operate in discontinuous-current mode (DCM), even if the magnetizing inductance of the coupled inductor is large. Therefore, the freewheeling diodes can achieve zero-current switching off (ZCS). Applying the principle of conservation of magnetic flux, the magnetizing current is converted between the two windings of the coupled inductor. Because nearly constant magnetizing current continuously flows into the output, the output voltage ripple can be effectively reduced without the use of large-value electrolytic capacitors. In addition, each winding current can drop from positive to negative, and this reverse current can discharge the parasitic capacitor of the active switch to zero volts. In this way, the active switches can operate at zero-voltage switching on (ZVS), leading to low switching losses. A 180 W prototype LED driver was built and tested. Our experimental results show satisfactory performance.

13.
Adv Healthc Mater ; 11(1): e2101556, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34648694

RESUMO

The critical effects that impair diabetic wound healing are characterized by poor vascularization and severe peripheral neuropathy. Current management strategies for diabetic wound healing are unsatisfactory, due to the paucity of neurovascular regeneration at the wound site. Importantly, conductivity in skin tissue is reported to be essential for modulating myriad biological processes especially vascular and nerve regeneration. Herein, an extracellular matrix (ECM)-based conductive dressing is synthesized from an interpenetrating polymer network hydrogel composed of gelatin methacryloyl, oxidized chondroitin sulfate (OCS), and OCS-polypyrrole conductive nanoparticles that can promote diabetic wound repairing by enhancing local neurovascular regeneration. The conductive hydrogels combine the advantageous features of water-swollen hydrogels with conductive polymers (CPs) to provide tissue-matching electrical conductivity and mechanical properties for neurovascular regeneration. In vitro and in vivo studies show that the conductive hydrogel can promote neurovascular regeneration by increasing intracellular Ca2+ concentration, which subsequently promotes phosphorylation of proteins in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways. Furthermore, the conductive hydrogel stimulates full-thickness diabetic wound repair on day 14 by promoting local neurovascular regeneration and collagen deposition. These findings corroborate that the ECM-based conductive interpenetrating network hydrogel dressing significantly promotes wound repairing due to its neurovascular regeneration properties, suggesting that they are suitable candidates for diabetic wound repair.


Assuntos
Diabetes Mellitus , Hidrogéis , Condutividade Elétrica , Matriz Extracelular , Gelatina , Humanos , Metacrilatos , Fosfatidilinositol 3-Quinases , Polímeros , Pirróis
14.
Angew Chem Int Ed Engl ; 61(4): e202113664, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34822728

RESUMO

Ruthenium (Ru)-based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru-H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru-H binding energy is the strong interaction between the 4 d z 2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4 d z 2 -band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy-nanosheets (RuCo ANSs). They were prepared via a fast co-precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z-direction asymmetric coordination structure, obtaining an optimal 4 d z 2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru-H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra-low overpotential of 10 mV at 10 mA cm-2 and a Tafel slope of 20.6 mV dec-1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal-H binding energy of active sites.

15.
Bioact Mater ; 10: 145-158, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34901536

RESUMO

Growth plate cartilage has limited self-repair ability, leading to poor bone bridge formation post-injury and ultimately limb growth defects in children. The current corrective surgeries are highly invasive, and outcomes can be unpredictable. Following growth plate injury, the direct loss of extracellular matrix (ECM) coupled with further ECM depletion due to the inhibitory effects of inflammation on the cartilage matrix protein greatly hinder chondrocyte regeneration. We designed an exosome (Exo) derived from bone marrow mesenchymal stem cells (BMSCs) loaded ECM-mimic hydrogel to promote cartilage repair by directly supplementing ECM and anti-inflammatory properties. Aldehyde-functionalized chondroitin sulfate (OCS) was introduced into gelatin methacryloyl (GM) to form GMOCS hydrogel. Our results uncovered that GMOCS hydrogel could significantly promote the synthesis of ECM due to the doping of OCS. In addition, the GMOCS-Exos hydrogel could further promote the anabolism of chondrocytes by inhibiting inflammation and ultimately promote growth plate injury repair through ECM remodeling.

16.
Talanta ; 235: 122763, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517624

RESUMO

The disease diagnosis by detecting single microRNAs (miRNAs) can produce high false positive rate. Herein, a novel fluorescence biosensor method for one-step simultaneous detection of multiple miRNAs was proposed by using single-stranded DNA (ssDNA) functionalized double quantum dots (QDs) and black hole quencher (BHQ)-decorated magnetic nanobeads (MNs). MNs were linked with two black hole quenchers (BHQ1 and BHQ3) via a complementary DNA (cDNA). The ssDNA/cDNA hybridization contributed to the fluorescence quenching of double QDs due to the fluorescence resonance energy transfer (FRET) between double QDs and BHQ. In the presence of target miRNA-33 (miR-33) and miRNA-125b (miR-125b), the ssDNA1 and ssDNA2 were respectively hybridized with miR-33 and miR-125b to form more stable duplexes. Thus, the double QDs were released into supernatant after the magnetic separation, leading to the fluorescence signals recovery at 537 nm and 647 nm. A wide linear range (0.5 nM-320 nM for miR-33 and 0.1 nM-250 nM for miR-125b) and low limits of detection (0.09 nM for miR-33 and 0.02 nM for miR-125b) were achieved. Moreover, our approach has been demonstrated to simultaneously detect miR-33 and miR-125b in cell extracts. With advantages of high sensitivity, strong specificity, low background and low cost, the strategies show great potentials for the detection of various targets in bioanalysis and disease diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Pontos Quânticos , DNA de Cadeia Simples/genética , Transferência Ressonante de Energia de Fluorescência , MicroRNAs/genética , Hibridização de Ácido Nucleico
17.
Angew Chem Int Ed Engl ; 60(48): 25241-25245, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550636

RESUMO

Atomically dispersed transition metal sites have been extensively studied for CO2 electroreduction reaction (CO2 RR) to CO due to their robust CO2 activation ability. However, the strong hybridization between directionally localized d orbits and CO vastly limits CO desorption and thus the activities of atomically dispersed transition metal sites. In contrast, s-block metal sites possess nondirectionally delocalized 3s orbits and hence weak CO adsorption ability, providing a promising way to solve the suffered CO desorption issue. Herein, we constructed atomically dispersed magnesium atoms embedded in graphitic carbon nitride (Mg-C3 N4 ) through a facile heat treatment for CO2 RR. Theoretical calculations show that the CO desorption on Mg sites is easier than that on Fe and Co sites. This theoretical prediction is demonstrated by experimental CO temperature program desorption and in situ attenuated total reflection infrared spectroscopy. As a result, Mg-C3 N4 exhibits a high turnover frequency of ≈18 000 per hour in H-cell and a large current density of -300 mA cm-2 in flow cell, under a high CO Faradaic efficiency ≥90 % in KHCO3 electrolyte. This work sheds a new light on s-block metal sites for efficient CO2 RR to CO.

18.
Angew Chem Int Ed Engl ; 60(30): 16607-16614, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33982396

RESUMO

Electrochemical production of hydrogen peroxide (H2 O2 ) through two-electron (2 e- ) oxygen reduction reaction (ORR) is an on-site and clean route. Oxygen-doped carbon materials with high ORR activity and H2 O2 selectivity have been considered as the promising catalysts, however, there is still a lack of direct experimental evidence to identify true active sites at the complex carbon surface. Herein, we propose a chemical titration strategy to decipher the oxygen-doped carbon nanosheet (OCNS900 ) catalyst for 2 e- ORR. The OCNS900 exhibits outstanding 2 e- ORR performances with onset potential of 0.825 V (vs. RHE), mass activity of 14.5 A g-1 at 0.75 V (vs. RHE) and H2 O2 production rate of 770 mmol g-1 h-1 in flow cell, surpassing most reported carbon catalysts. Through selective chemical titration of C=O, C-OH, and COOH groups, we found that C=O species contributed to the most electrocatalytic activity and were the most active sites for 2 e- ORR, which were corroborated by theoretical calculations.

19.
Bioact Mater ; 6(9): 2754-2766, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33665507

RESUMO

The host immune response effecting on biomaterials is critical to determine implant fates and bone regeneration property. Bone marrow stem cells (BMSCs) derived exosomes (Exos) contain multiple biosignal molecules and have been demonstrated to exhibit immunomodulatory functions. Herein, we develop a BMSC-derived Exos-functionalized implant to accelerate bone integration by immunoregulation. BMSC-derived Exos were reversibly incorporated on tannic acid (TA) modified sulfonated polyetheretherketone (SPEEK) via the strong interaction of TA with biomacromolecules. The slowly released Exos from SPEEK can be phagocytosed by co-cultured cells, which could efficiently improve the biocompatibilities of SPEEK. In vitro results showed the Exos loaded SPEEK promoted macrophage M2 polarization via the NF-κB pathway to enhance BMSCs osteogenic differentiation. Further in vivo rat air-pouch model and rat femoral drilling model assessment of Exos loaded SPEEK revealed efficient macrophage M2 polarization, desirable new bone formation, and satisfactory osseointegration. Thus, BMSC-derived Exos-functionalized implant exerted osteoimmunomodulation effect to promote osteogenesis.

20.
Cytotherapy ; 23(1): 57-64, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33218835

RESUMO

BACKGROUND AIMS: Stem cell transplantation is a potential treatment for intractable spinal cord injury (SCI), and allogeneic human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising candidate because of the advantages of immune privilege, paracrine effect, immunomodulatory function, convenient collection procedure and little ethical concern, and there is an urgent need to develop a safe and effective protocol regarding their clinical application. METHODS: A prospective, single-center, single-arm study in which subjects received four subarachnoid transplantations of hUC-MSCs (1 × 106 cells/kg) monthly and were seen in follow-up four times (1, 3, 6 and 12 months after final administration) was conducted. At each scheduled time point, safety and efficacy indicators were collected and analyzed accordingly. Adverse events (AEs) were used as a safety indicator. American Spinal Injury Association (ASIA) and SCI Functional Rating Scale of the International Association of Neurorestoratology (IANR-SCIFRS) total scores at the fourth follow-up were determined as primary efficacy outcomes, whereas these two indicators at the remaining time points as well as scores of pinprick, light touch, motor and sphincter, muscle spasticity and spasm, autonomic system, bladder and bowel functions, residual urine volume (RUV) and magnetic resonance imaging (MRI) were secondary efficacy outcomes. Subgroup analysis of primary efficacy indicators was also performed. RESULTS: Safety and efficacy assessments were performed on 102 and 41 subjects, respectively. Mild AEs involving fever (14.1%), headache (4.2%), transient increase in muscle tension (1.6%) and dizziness (1.3%) were observed following hUC-MSC transplantation and resolved thoroughly after conservative treatments. There was no serious AE. ASIA and IANR-SCIFRS total scores revealed statistical increases when compared with the baselines at different time points during the study, mainly reflected in the improvement of pinprick, light touch, motor and sphincter scores. Moreover, subjects showed a continuous and remarkable decrease in muscle spasticity. Regarding muscle spasm, autonomic system, bladder and bowel functions, RUV and MRI, data/imaging at final follow-up showed significant improvements compared with those at first collection. Subgroup analysis found that hUC-MSC transplantation improved neurological functions regardless of injury characteristics, including level, severity and chronicity. CONCLUSIONS: The authors' present protocol demonstrates that intrathecal administration of' allogeneic hUC-MSCs at a dose of 106 cells/kg once a month for 4 months is safe and effective and leads to significant improvement in neurological dysfunction and recovery of quality of life.


Assuntos
Células-Tronco Mesenquimais , Traumatismos da Medula Espinal/terapia , Cordão Umbilical/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Qualidade de Vida , Espaço Subaracnóideo/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...