Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400448

RESUMO

Accurate fault diagnosis is essential for the safe operation of rotating machinery. Recently, traditional deep learning-based fault diagnosis have achieved promising results. However, most of these methods focus only on supervised learning and tend to use small convolution kernels non-effectively to extract features that are not controllable and have poor interpretability. To this end, this study proposes an innovative semi-supervised learning method for bearing fault diagnosis. Firstly, multi-scale dilated convolution squeeze-and-excitation residual blocks are designed to exact local and global features. Secondly, a classifier generative adversarial network is employed to achieve multi-task learning. Both unsupervised and supervised learning are performed simultaneously to improve the generalization ability. Finally, supervised learning is applied to fine-tune the final model, which can extract multi-scale features and be further improved by implicit data augmentation. Experiments on two datasets were carried out, and the results verified the superiority of the proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA