Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725860

RESUMO

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Assuntos
Glioblastoma , Fator de Transcrição STAT3 , Transdução de Sinais , Tetraspaninas , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Fator de Transcrição STAT3/metabolismo , Tetraspaninas/metabolismo , Tetraspaninas/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Animais , Proliferação de Células/genética , Exossomos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular/genética , Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos
2.
Toxicol Res (Camb) ; 13(2): tfae052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567035

RESUMO

Objective: Storke is a leading cause of death and disability affecting million people worldwide, 80% of which is ischemic stroke (IS). Recently, traditional Chinese medicines (TCMs) have received great attentions in treating IS due to their low poisonous effects and high safety. Buyang Huanwu Decoction (BHD), a famous and classical Chinese prescription, has been used for treating stroke-induced disability for centuries. Yet, its underlying mechanism is still in fancy. Methods: We first constructed an IS model by middle cerebral artery occlusion (MCAO). Then, a metabonomics study on serum samples was performed using UHPLC-QTOF/MS, followed by multivariate data analysis including principal components analysis (PCA) and orthogonal partial least squares-discriminate analysis (OPLS-DA). Results: Metabolic profiling of PCA indicated metabolic perturbation caused by MCAO was regulated by BHD back to normal levels, which is in agreement with the neurobehavioral evaluations. In the OPLS-DA, 12 metabolites were screened as potential biomarkers involved in MCAO-induced IS. Three metabolic pathways were recognized as the most relevant pathways, involving one carbon pool by folate, sphingolipid metabolism and inositol phosphate metabolism. BHD significantly reversed the abnormality of 7 metabolites to normal levels. Conclusions: This is the first study to investigate the effect of BHD on IS at the metabolite level and to reveal the underlying mechanisms of BHD, which is complementary to neurobehavioral evaluation. In a broad sense, the current study brings novel and valuable insights to evaluate efficacy of TCMs, to interpret the action mechanisms, and to provide the theoretical basis for further research on the therapeutic mechanisms in clinical practice.

3.
J Immunol Res ; 2023: 6696967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928434

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies and tissue inflammation. Mesenchymal stem cells (MSCs) have emerged as a promising candidate therapy for SLE owing to the immunomodulatory and regenerative properties. Circulating miRNAs are small, single-stranded noncoding RNAs in a variety of body fluids that regulate numerous immunologic and inflammatory pathways. Recent studies have revealed many differentially expressed circulating miRNAs in autoimmune diseases including SLE. However, the role of circulating miRNAs in SLE has not been extensively studied. Here, we performed small RNA sequencing analysis to compare the circulating miRNA profiles of SLE patients before and after MSC transplantation (MSCT), and identified a significant decrease of circulating miR-320b level during MSCT. Importantly, we found that the expression of circulating miR-320b and its target gene MAP3K1 was closely associated with SLE disease activity. The in vitro experiments showed that decreased MAP3K1 level in SLE peripheral blood mononuclear cells (PBMCs) was involved in CD4+ T-cell proliferation. In MRL/lpr mice, miR-320b overexpression aggravated symptoms of SLE, while miR-320b inhibition could promote disease remission. Besides, MSCs regulate miR-320b/MAP3K1 expression both in vitro and in vivo. Our results suggested that circulating miR-320b and MAP3K1 may be involved in CD4+ T-cell proliferation in SLE. This trial is registered with NCT01741857.


Assuntos
Lúpus Eritematoso Sistêmico , MAP Quinase Quinase Quinase 1 , MicroRNAs , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/terapia , MAP Quinase Quinase Quinase 1/metabolismo , Camundongos Endogâmicos MRL lpr , MicroRNAs/genética , MicroRNAs/metabolismo
4.
ACS Nano ; 17(19): 19033-19051, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37737568

RESUMO

Selective autophagy is a defense mechanism by which foreign pathogens and abnormal substances are processed to maintain cellular homeostasis. Sequestosome 1 (SQSTM1)/p62, a vital selective autophagy receptor, recruits ubiquitinated cargo to form autophagosomes for lysosomal degradation. Nab-PTX is an albumin-bound paclitaxel nanoparticle used in clinical cancer therapy. However, the role of SQSTM1 in regulating the delivery and efficacy of nanodrugs remains unclear. Here we showed that SQSTM1 plays a crucial role in Nab-PTX drug delivery and efficacy in human lung and colorectal cancers. Nab-PTX induces SQSTM1 phosphorylation at Ser403, which facilitates its incorporation into the selective autophagy of nanoparticles, known as nanoparticulophagy. Nab-PTX increased LC3-II protein expression, which triggered autophagosome formation. SQSTM1 enhanced Nab-PTX recognition to form autophagosomes, which were delivered to lysosomes for albumin degradation, thereby releasing PTX to induce mitotic catastrophe and apoptosis. Knockout of SQSTM1 downregulated Nab-PTX-induced mitotic catastrophe, apoptosis, and tumor inhibition in vitro and in vivo and inhibited Nab-PTX-induced caspase 3 activation via a p53-independent pathway. Ectopic expression of SQSTM1 by transfection of an SQSTM1-GFP vector restored the drug efficacy of Nab-PTX. Importantly, SQSTM1 is highly expressed in advanced lung and colorectal tumors and is associated with poor overall survival in clinical patients. Targeting SQSTM1 may provide an important strategy to improve nanodrug efficacy in clinical cancer therapy. This study demonstrates the enhanced efficacy of Nab-PTX for human lung and colorectal cancers via SQSTM1-mediated nanodrug delivery.

5.
Endocr Connect ; 12(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682119

RESUMO

Introduction: Chronic thyrotoxic myopathy (CTM) is a common, easily neglected complication of hyperthyroidism. There are currently no standard diagnostic criteria for CTM, and the ultrasonic characteristics of CTM-affected skeletal muscle remain unclear. Herein, we aimed to evaluate hyperthyroid patients for CTM by ultrasound and identify ultrasonic muscle parameter cutoffs for CTM diagnosis. Materials and methods: Each participant underwent ultrasonography. The original (muscle thickness (MT), pennation angle (PA), and cross-sectional area (CSA)) and corrected (MT/height (HT), MT/body mass index (BMI), CSA/HT, and CSA/BMI) parameters of the vastus lateralis and vastus medialis (VM) were evaluated. The diagnostic effectiveness of ultrasound for predicting CTM was determined using receiver operating characteristic (ROC) curve analysis. Our study included 203 participants: 67 CTM patients (18 males, 49 females), 67 non-CTM patients (28 males, 39 females) and 69 healthy controls (20 males, 49 females). Results: The CTM group had lower muscular ultrasonic and anthropometric parameters, higher thyroid hormone and thyroid-stimulating hormone receptor antibody (TRAb) levels, and a longer duration of hyperthyroidism than the non-CTM group (P < 0.05). The VM-PA, VM-CSA, VM-CSA/HT, and VM-CSA/BMI were lower in females than in males (P < 0.05). Free thyroxine (FT4) and TRAb both showed significant negative correlations with VM-MT, VM-MT/HT, VM-CSA, and VM-CSA/HT (P < 0.05). VM-MT/BMI and VM-CSA/HT, respectively, best predicted male and female CTM (AUC = 0.84, 0.85; cutoff ≤ 0.07, < 4.01). Conclusion: Ultrasound measurement of muscular parameters, especially in the VM, is a valid and feasible way of diagnosing and characterizing possible CTM in hyperthyroidism.

6.
Front Physiol ; 14: 1217045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534366

RESUMO

The study aimed to investigate the post-activation performance enhancement (PAPE) of flywheel training (FT) on lower limb explosive power performance. Using a randomized crossover design, 20 trained men (age = 21.5 ± 1.4 years; training experience 5.5 ± 1.2 years) completed seven main conditions after three familiarization sessions. The first three conditions tested the PAPE of the FT on the counter movement jump (CMJ) under three different inertial loads (0.041 kg·m2 as L; 0.057 kg·m2 as ML; and 0.122 kg·m2 as P), whereas the following four conditions tested the PAPE of FT on the 30 m sprint, which consisted of three inertial loads (L, ML, and P) and a control condition. Participants were required to perform the CMJ or 30 m sprint at baseline (Tb) and immediately (T0), 4 min (T4), 8 min (T8), 12 min (T12), and 16 min (T16) after exercise, respectively. The results of the CMJ conditions showed that PAPE peaked at T4 (p < 0.01) and almost subsided at T12 (p > 0.05) in ML and P conditions. Meanwhile, PAPE appeared earlier in the P condition, and the effect was more significant (P:ES = 1.09; ML:ES = 0.79). 30 m sprint results showed significant improvement only in the ML condition. The PAPE peaked at T4 (p < 0.05, ES = -0.47) and almost subsided at T8 (p > 0.05). It was mainly due to the significant enhancement of the 10-30 m segmental timing performance at T4 (p < 0.05, ES = -0.49). This study indicates that the size of the inertial load could influence the magnitude of the PAPE produced by the explosive force of the lower limb. The PAPE of the vertical explosive force increased with increasing inertial load, but the PAPE of the horizontal explosive force did not appear at the maximum inertial load. The most effective elicitation of the PAPE was at 4-8 min after the FT.

7.
Blood ; 142(10): 903-917, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319434

RESUMO

The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.


Assuntos
Proteína 7 Semelhante a Angiopoietina , Proteína 1 Inibidora de Diferenciação , Leucemia Mieloide Aguda , Animais , Camundongos , Proteína 7 Semelhante a Angiopoietina/genética , Proteína 7 Semelhante a Angiopoietina/metabolismo , Medula Óssea/metabolismo , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Microambiente Tumoral , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo
8.
J Environ Manage ; 344: 118496, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384996

RESUMO

The effects of raw attapulgite clay and thermally modified attapulgite clay on the growth status of submerged plant Vallisneria Spiralis (V. spiralis) and the microenvironment of sediment were first explored. The results demonstrated that the attapulgite could effectively promote the development of V. spiralis and improve plant stress resistance by enhancing the activity of antioxidant enzymes. The 10% addition of attapulgite clay increased the biomass of V. spiralis by 27%∼174%, and the promoted rate of raw attapulgite clay was 2∼5 times of modified attapulgite clay. The attapulgite increased redox potential in sediment (P < 0.05) and provided proper niches for organism propagation, further promoting the degradation of organic matter and nutrient metabolism in sediment. The value of Shannon, Chao, and Ace was 9.98, 4865.15, 5029.08 in the 10% modified attapulgite group, and 10.12, 4856.85, 4947.78 in the 20% raw attapulgite group, respectively, indicating that the attapulgite could increase the microbial diversity and abundance in sediment. Additionally, the nutrient elements, such as Ca, Na, S, Mg, K, Zn, and Mo, that dissolved from attapulgite may also promote the V. spiralis growth. This study provided an environment-friendly approach to facilitating submerged macrophyte restoration in the eutrophic lake ecosystem.


Assuntos
Ecossistema , Hydrocharitaceae , Argila , Biomassa , Compostos de Magnésio , Hydrocharitaceae/metabolismo , Lagos
9.
Cell Rep ; 42(5): 112417, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37074913

RESUMO

The P-type ATPase ATP7B exports cytosolic copper and plays an essential role in the regulation of cellular copper homeostasis. Mutants of ATP7B cause Wilson disease (WD), an autosomal recessive disorder of copper metabolism. Here, we present cryoelectron microscopy (cryo-EM) structures of human ATP7B in the E1 state in the apo, the putative copper-bound, and the putative cisplatin-bound forms. In ATP7B, the N-terminal sixth metal-binding domain (MBD6) binds at the cytosolic copper entry site of the transmembrane domain (TMD), facilitating the delivery of copper from the MBD6 to the TMD. The sulfur-containing residues in the TMD of ATP7B mark the copper transport pathway. By comparing structures of the E1 state human ATP7B and E2-Pi state frog ATP7B, we propose the ATP-driving copper transport model of ATP7B. These structures not only advance our understanding of the mechanisms of ATP7B-mediated copper export but can also guide the development of therapeutics for the treatment of WD.


Assuntos
Proteínas de Transporte de Cátions , Degeneração Hepatolenticular , Humanos , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Microscopia Crioeletrônica , Degeneração Hepatolenticular/metabolismo
10.
Anticancer Agents Med Chem ; 23(11): 1309-1319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815658

RESUMO

BACKGROUND: Lung cancer has become one of the leading causes of cancer incidence and mortality worldwide. Non-small cell lung carcinoma (NSCLC) is the most common type among all lung cancer cases. NSCLC patients contained high levels of activating epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion, L858R and T790M. Osimertinib, a third-generation of EGFR tyrosine kinase inhibitor (EGFR-TKI), has therapeutic efficacy on the EGFR-T790M mutation of NSCLC patients; however, treatment of osimertinib still can induce drug resistance in lung cancer patients. Therefore, investigation of the drug resistance mechanisms of osimertinib will provide novel strategies for lung cancer therapy. METHODS: The H1975OR osimertinib-resistant cell line was established by prolonged exposure with osimertinib derived from the H1975 cells. The cell proliferation ability was evaluated by the cell viability and cell growth assays. The cell migration ability was determined by the Boyden chamber assays. The differential gene expression profile was analyzed by genome-wide RNA sequencing. The protein expression and location were analyzed by western blot and confocal microscopy. RESULTS: In this study, we established the osimertinib-resistant H1975 (T790M/L858R) cancer cells, named the H1975OR cell line. The cell growth ability was decreased in the H1975OR cells by comparison with the H1975 parental cells. Conversely, the cell migration ability was elevated in the H1975OR cells. We found the differential gene expression profile of cell proliferation and migration pathways between the H1975OR and H1975 parental cells. Interestingly, the protein levels of phospho-EGFR, PD-L1, E-cadherin and ß-catenin were decreased, but the survivin and N-cadherin proteins were increased in the H1975OR drug-resistant cells. CONCLUSION: Osimertinib induces the opposite effect of proliferation and migration in the drug resistance of EGFRT790M lung cancer cells. We suggest that differential gene and protein expressions in the cell proliferation and migration pathways may mediate the drug resistance of osimertinib in lung cancer cells. Understanding the molecular drugresistant mechanisms of proliferation and migration pathways of osimertinib may provide novel targets and strategies for the clinical treatment of EGFR-TKIs in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Mutação , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Compostos de Anilina/farmacologia , Proliferação de Células
11.
J Mol Diagn ; 25(1): 57-67, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343861

RESUMO

Wilson disease (WD) is a hereditary disorder of copper metabolism, resulting from mutations within ATP7B. Early diagnosis is essential for affected individuals. However, there are still patients with clinically suspected WD who do not have detectable pathogenic variants, which makes diagnosis difficult and delays treatment. This study included such patients from the authors' center and screened for the full-length sequence of ATP7B by next-generation sequencing. Newly identified synonymous and intronic variants were then analyzed with in silico tools. A minigene system was constructed to determine the pathogenicity of these variants in terms of splicing and blood RNA extraction, and RT-PCR experiments were performed on several patients to verify the splicing alterations. The phenotypes of the patients were also analyzed. Fourteen suspected pathogenic variants, including nine synonymous and five intronic variants, were detected in 12 patients with clinically suspected WD. Among them, four synonymous variants (c.1050G>A, c.1122C>G, c.3243G>A, and c.4014T>A) and four intronic variants (c.1543 +40G>A, c.1707+6_1707+16del, c.1870-49A>G, and c.2731-67A>G) resulted in splicing changes in ATP7B. After the above analysis, the diagnosis of WD could be confirmed in eight clinically suspected patients with WD who showed a late age of onset.


Assuntos
ATPases Transportadoras de Cobre , Degeneração Hepatolenticular , Humanos , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Íntrons/genética , Mutação , Splicing de RNA/genética , Virulência , ATPases Transportadoras de Cobre/genética
12.
Biochem Pharmacol ; 206: 115289, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36241092

RESUMO

Colorectal cancer (CRC) is a leading cause and mortality worldwide. Aurora A and haspin kinases act pivotal roles in mitotic progression. However, the blockage of Aurora A and Haspin for CRC therapy is still unclear. Here we show that the Haspin and p-H3T3 protein levels were highly expressed in CRC tumor tissues of clinical patients. Overexpression of Haspin increased the protein levels of p-H3T3 and survivin in human CRC cells; conversely, the protein levels of p-H3T3 and survivin were decreased by the Haspin gene knockdown. Moreover, the gene knockdown of Aurora A induced abnormal chromosome segregation, mitotic catastrophe, and cell growth inhibition. Combined targeted by co-treatment of CHR6494, a Haspin inhibitor, and MLN8237, an Aurora A inhibitor, enhanced apoptosis and CRC tumor inhibition. MLN8237 and CHR6494 induced abnormal chromosome segregation and mitotic catastrophe. Meanwhile, MLN8237 and CHR6494 inhibited survivin protein levels but conversely induced p53 protein expression. Ectopic survivin expression by transfection with a survivin-expressed vector resisted the cell death in the MLN8237- and CHR6494-treated cells. In contrast, the existence of functional p53 increased the apoptotic levels by treatment with MLN8237 and CHR6494. Co-treatment of CHR6494 and MLN8237 enhanced the blockage of human CRC xenograft tumors in nude mice. Taken together, co-inhibition of Aurora A and Haspin enhances survivin inhibition, p53 pathway induction, mitotic catastrophe, apoptosis and tumor inhibition that may provide a potential strategy for CRC therapy.


Assuntos
Aurora Quinase A , Neoplasias Colorretais , Survivina , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Camundongos Nus , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Survivina/genética , Survivina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/genética
13.
Sci Total Environ ; 846: 157505, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870592

RESUMO

We investigated the long-term effects (6 years) of sediment improvement and submerged plant restoration of a subtropical shallow urban lake, Hangzhou West Lake China. To reveal the lake ecosystems variations, we analyzed the sediment properties, submerged macrophyte characteristics, sediment microorganisms, and benthic macroinvertebrate communities from 2015 to 2020. The ecological restoration project decreased sediment TP and OM, increased submerged macrophyte biomass and sediment microbial diversity, and improved the benthic macroinvertebrate communities in the restored area. The sediment TP decreased from 2.94 mg/g in 2015 to 1.33 mg/g in 2020. The sediment OM of the restored area decreased from 27.44 % in 2015 to 8.08 % in 2020. Principal component analysis (PCA) confirmed that the restoration improved the sediment conditions, making it suitable for the growth of submerged macrophytes, and then sped up the restoration and reconstruction of the lake ecosystem. These results have significant implications on the ecological management of shallow lakes.


Assuntos
Ecossistema , Lagos , Biomassa , China , Estudos Longitudinais , Plantas
14.
J Fish Dis ; 45(10): 1491-1509, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35749280

RESUMO

Aeromonas hydrophila is a common pathogen of freshwater fish. In this study, A. hydrophila infection was shown to cause tissue damage, trigger physiological changes as well as alter the expression profiles of immune- and metabolic-related genes in immune tissues of red crucian carp (RCC). Transcriptome analysis revealed that acute A. hydrophila infection exerted a profound effect on mitochondrial oxidative phosphorylation linking metabolic regulation to immune response. In addition, we further identified cellular senescence, apoptosis, necrosis and mitogen-activated protein kinase signal pathways as crucial signal pathways in the kidney of RCC subjected to A. hydrophila infection. These findings may have important implications for understanding modulation of immunometabolic response to bacterial infection.


Assuntos
Carcinoma de Células Renais , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Neoplasias Renais , Aeromonas hydrophila/fisiologia , Animais , Carpas/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Carpa Dourada/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transcriptoma
15.
Mov Disord ; 37(7): 1531-1535, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35507442

RESUMO

BACKGROUND: Wilson's disease (WD) currently lacks a promising indicator that could reflect neurological impairment and monitor treatment outcome. We aimed to investigate whether serum neurofilament light chain (sNfL) functions as a candidate for disease assessment and treatment monitoring of WD. METHODS: We assessed preclinical and manifested WD patients' sNfL levels compared to controls and analyzed the differences between patients with various clinical symptoms. We then explored the correlation between clinical scales and sNfL levels. And repeated measurements were performed in 34 patients before and after treatment. RESULTS: WD patients with neurological involvement had significantly higher sNfL levels than both hepatic patients and controls. Positive correlations were found between Unified Wilson's Disease Rating Scale scores and sNfL and between semiquantitative magnetic resonance imaging scales and sNfL levels in WD patients. However, in the treatment follow-up analysis, the trend of sNfL before and after treatment disaccorded with clinical response. CONCLUSION: These findings suggest that sNfL levels can be an ideal indicator for the severity of neurological involvement but fail to evaluate change in disease condition after treatment. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Degeneração Hepatolenticular , Biomarcadores , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/terapia , Humanos , Filamentos Intermediários , Imageamento por Ressonância Magnética , Resultado do Tratamento
16.
Fish Shellfish Immunol ; 126: 197-210, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35609760

RESUMO

Ferritin M is involved in the regulation of fish immunity. In this study, open reading frame (ORF) sequences of ferritin M from hybrid fish and its parental species were 534 bp. Tissue-specific analysis indicated that the highest level of ferritin M from red crucian carp was observed in kidney, while peaked expressions of ferritin M from white crucian carp and hybrid carp were observed in gill. Elevated levels of ferritin M from hybrid carp and its parental species were detected in immune-related tissues following Aeromonas hydrophila infection or in cultured fish cell lines after lipopolysaccharide (LPS) challenge. Ferritin M overexpression could attenuate NF-κB and TNFα promoter activity in their respective fish cells. Purified ferritin M fusion proteins elicited in vitro binding activity to A. hydrophila and Edwardsiella tarda, lowered bacterial dissemination to tissues and alleviated inflammatory response. Furthermore, treatment with ferritin M fusion proteins could mitigate bacteria-induced liver damage and rescue antioxidant activity. These results suggested that ferritin M in hybrid fish showed a similar immune defense against bacteria infection in comparison with those of its parental species.


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Animais , Carpas/metabolismo , Ferritinas , Proteínas de Peixes , Carpa Dourada
17.
Chemosphere ; 298: 134236, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35288180

RESUMO

The diffusive gradients in thin films (DGT) technique was applied to determine the mechanism by which bentonite improves the eutrophic lake sediment microenvironment and enhances submerged plant growth. The migration dynamics of N, P, S, and other nutrient elements were established for each sediment layer and the remediation effects of bentonite and submerged plants on sediments were evaluated. Submerged plant growth in the bentonite group was superior to that of the Control. At harvest time, the growth of Vallisneria spiralis and Hydrilla verticillata was optimal on a substrate consisting of five parts eutrophic lake sediment to one part modified bentonite (MB5/1). Bentonite addition to the sediment was conducive to rhizosphere microorganism proliferation. Microbial abundance was highest under the MB5/1 treatment whilst microbial diversity was highest under the RB1/1 (equal parts raw bentonite and eutrophic lake sediment) treatment. Bentonite addition to the sediment may facilitate the transformation of nutrients to bioavailable states. The TP content of the bentonite treatment was 22.47%-46.70% lower than that of the Control. Nevertheless, the bentonite treatment had higher bioavailable phosphorus (BIP) content than the control. The results of this study provide theoretical and empirical references for the use of a combination of modified bentonite and submerged plants to remediate eutrophic lake sediment microenvironments.


Assuntos
Hydrocharitaceae , Poluentes Químicos da Água , Bentonita/química , Sedimentos Geológicos/química , Lagos/química , Fósforo/química , Poluentes Químicos da Água/análise
18.
J Environ Sci (China) ; 118: 130-139, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305761

RESUMO

Ecological restoration is one of the hot technologies for the reconstruction of eutrophic lake ecosystems in which the restoration and propagation of submerged plants is the key and difficult step. In this paper, the effect of vermiculite on the growth process of Vallisneria spiralis and sediment microenvironment were investigated, aiming to provide a theoretical basis for the application of vermiculite in aquatic ecological restoration. Results of growth indexes demonstrated that 5% and 10% vermiculite treatment groups statistically promote the growth of Vallisneria spiralis compared to the control. Meanwhile, the results of ecophysiological indexes showed that photosynthetic pigment, soluble sugar content, superoxide dismutase (SOD), and catalase (CAT) activity of 5% and 10% group were increased compared with the control while the malondialdehyde (MDA) content exhibited the opposite result (p < 0.05), which illustrated that vermiculite can improve the resistance of plants and delay the aging process of Vallisneria spiralis. In addition, result of PCA (Principal Component Analysis) demonstrated 5% and 10% group has improved the sediment physical conditions and create more ecological niche for microorganisms directly, and then promoted the growth of plants. The dissolution results showed that vermiculite can dissolve the constant and trace elements needed for plant growth. Furthermore, the addition of vermiculite increased the diversity of microorganisms in the sediments, and promoted the increase of plant growth-promoting bacteria and phosphorus-degrading bacteria. This study could provide a technique reference for the further application of vermiculite in the field of ecological restoration.


Assuntos
Ecossistema , Hydrocharitaceae , Silicatos de Alumínio , Lagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...