Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6096, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030168

RESUMO

Coherent interconversion between microwave and optical frequencies can serve as both classical and quantum interfaces for computing, communication, and sensing. Here, we present a compact microwave-optical transducer based on monolithic integration of piezoelectric actuators on silicon nitride photonic circuits. Such an actuator couples microwave signals to a high-overtone bulk acoustic resonator defined by the silica cladding of the optical waveguide core, suspended to enhance electromechanical and optomechanical couplings. At room temperature, this triply resonant piezo-optomechanical transducer achieves an off-chip photon number conversion efficiency of 1.6 × 10-5 over a bandwidth of 25 MHz at an input pump power of 21 dBm. The approach is scalable in manufacturing and does not rely on superconducting resonators. As the transduction process is bidirectional, we further demonstrate the synthesis of microwave pulses from a purely optical input. Capable of leveraging multiple acoustic modes for transduction, this platform offers prospects for frequency-multiplexed qubit interconnects and microwave photonics at large.

2.
Nanophotonics ; 10(7): 1923-1930, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880094

RESUMO

Difference-frequency generation (DFG) is elemental for nonlinear parametric processes such as optical parametric oscillation and is instrumental for generating coherent light at long wavelengths, especially in the middle infrared. Second-order nonlinear frequency conversion processes like DFG require a second-order susceptibility χ (2), which is absent in centrosymmetric materials, e.g. silicon-based platforms. All-optical poling is a versatile method for inducing an effective χ (2) in centrosymmetric materials through periodic self-organization of charges. Such all-optically inscribed grating can compensate for the absence of the inherent second-order nonlinearity in integrated photonics platforms. Relying on this induced effective χ (2) in stoichiometric silicon nitride (Si3N4) waveguides, second-order nonlinear frequency conversion processes, such as second-harmonic generation, were previously demonstrated. However up to now, DFG remained out of reach. Here, we report both near- and non-degenerate DFG in all-optically poled Si3N4 waveguides. Exploiting dispersion engineering, particularly rethinking how dispersion can be leveraged to satisfy multiple processes simultaneously, we unlock nonlinear frequency conversion near 2 µm relying on all-optical poling at telecommunication wavelengths. The experimental results are in excellent agreement with theoretically predicted behaviours, validating our approach and opening the way for the design of new types of integrated sources in silicon photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA