Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 191: 106644, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38616001

RESUMO

OBJECTIVE: To assess and compare the composition of tongue coating microbiota among patients at different stages of rheumatoid arthritis (RA). METHODS: A total of 47 patients diagnosed with RA, as per the American College of Rheumatology criteria, and 10 healthy individuals were enrolled in this study. The RA patients were stratified considering their Disease Activity Score 28 (DAS28), a composite measure based on the 28 tender and swollen joint count and erythrocyte sedimentation rate (ESR). The study population was further categorized into active phase group (LMH group) and inactive phase group (RE group) according to their DAS28 values. DNA extraction was extracted from tongue coating samples. Subsequently, the V3-V4 16S rDNA region was selectively amplified and sequenced through high-throughput 16S rDNA analysis. The resulting data were then utilized to ascertain the microbial contents. RESULTS: Significant variations were observed in the tongue coating microbiota of patients with RA during active and inactive phases, in comparison to healthy individuals (p < 0.05). At the genus level, the presence of Prevotellan, Veillonella, Rothia, and Neisseria in RA patients was notably more evident than in the healthy control (HC) group. These disparities find support in existing research on gut and oral microbiota. During the active phase of RA, the relative abundance of Veillonella, Rothia, and Neisseria in the tongue coating microbiota of patients was significantly higher than in those with inactive RA. These findings underscore the need for further and in-depth research on the potential impact of these microorganisms on the progression of RA disease. CONCLUSION: The results substantiate the hypothesis that tongue coating microbes actively contribute to the progression of RA.

2.
Theranostics ; 13(12): 4016-4029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554264

RESUMO

Rationale: The resistance of pancreatic ductal adenocarcinoma (PDAC) to immunotherapies is caused by the immunosuppressive tumor microenvironment (TME) and dense extracellular matrix. Currently, the efficacy of an isolated strategy targeting stromal desmoplasia or immune cells has been met with limited success in the treatment of pancreatic cancer. Oncolytic virus (OV) therapy can remodel the TME and damage tumor cells either by directly killing them or by enhancing the anti-tumor immune response, which holds promise for the treatment of PDAC. This study aimed to investigate the therapeutic effect of OX40L-armed OV on PDAC and to elucidate the underlying mechanisms. Methods: Murine OX40L was inserted into herpes simplex virus-1 (HSV-1) to construct OV-mOX40L. Its expression and function were assessed using reporter cells, cytopathic effect, and immunogenic cell death assays. The efficacy of OV-mOX40L was then evaluated in a KPC syngeneic mouse model. Tumor-infiltrating immune and stromal cells were analyzed using flow cytometry and single-cell RNA sequencing to gain insight into the mechanisms of oncolytic virotherapy. Results: OV-mOX40L treatment delayed tumor growth in KPC tumor-bearing C57BL/6 mice. It also boosted the tumor-infiltrating CD4+ T cell response, mitigated cytotoxic T lymphocyte (CTL) exhaustion, and reduced the number of regulatory T cells. The treatment of OV-mOX40L reprogrammed macrophages and neutrophils to a more pro-inflammatory anti-tumor state. In addition, the number of myofibroblastic cancer-associated fibroblasts (CAF) was reduced after treatment. Based on single-cell sequencing analysis, OV-mOX40L, in combination with anti-IL6 and anti-PD-1, significantly extended the lifespan of PDAC mice. Conclusion: OV-mOX40L converted the immunosuppressive tumor immune microenvironment to a more activated state, remodeled the stromal matrix, and enhanced T cell response. OV-mOX40L significantly prolonged the survival of PDAC mice, either as a monotherapy or in combination with synergistic antibodies. Thus, this study provides a multimodal therapeutic strategy for pancreatic cancer treatment.


Assuntos
Carcinoma Ductal Pancreático , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Animais , Camundongos , Microambiente Tumoral , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas
3.
ACS Appl Mater Interfaces ; 15(34): 41019-41030, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37582186

RESUMO

Liquid high-vinyl polybutadiene (PB) possessed excellent dielectric properties, rendering them suitable candidates for adhesive films of high-frequency printed boards. However, their inherent low molecular weights resulted in chain slippage and overflow during processing, thereby diminishing the performance of the adhesive films. To address this challenge, we synthesized comb PB with long polystyrene side chains via reversible addition-fragmentation chain transfer (RAFT) polymerization, effectively immobilizing the PB backbone and restricting relative chain slippage. Controlling the length and number of "comb teeth" (styrene side chains) efficiently regulated the flowability of comb PB, achieving distinct flow states. Simultaneously, molecular dynamics simulations revealed that the elongated and inflexible polystyrene side chains of comb PB could create minuscule cavities, which impeded close packing of molecules and led to low dielectric constants (2.39/2.01, 1 MHz/10 GHz) and ultralow dielectric losses (0.0071/0.0016, 1 MHz/10 GHz). Furthermore, a series of printed circuit boards were fabricated using a comb PB adhesive film, and the signal loss was significantly reduced to 48.8% (19 GHz) in comparison with a commercial epoxy adhesive. This study demonstrated the potential of comb PB with polystyrene side chains to achieve desirable flow and dielectric properties by introducing tangles, large volume potential resistance, and microporosity compared with block structures.

4.
J Hazard Mater ; 459: 132079, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37478595

RESUMO

Arsenic oxidation plays a crucial role in its removal, which has been identified in numerous studies. However, the mechanisms, especially reaction pathways of arsenic oxidation on sorbent surfaces remain inadequately explored. In this work, the effects of Mn doping on arsenic adsorption and oxidation were first verified by adsorption experiments. Subsequently, DFT calculations were carried out to identify alterations in the adsorption energies, active sites, and oxidation pathways. By integrating the experimental and simulation results, a dual-functional framework encompassing adsorption and catalysis of Mn-modified Fe-based material was distinctly established. For adsorption, the introduction of manganese into iron-based sorbent considerably enhanced As2O3 adsorption owing to the increased active sites available for As2O3 chemisorption and the promotion of surface nucleophilicity. Concerning oxidative catalysis, the incorporation of MnO2 augmented surface catalytic oxidation and provided a substantial amount of active Oload. Consequently, the arsenic oxidation occurring on the Mn-modified sorbent surfaces possessed a lower oxidation RDS energy barrier and a shorter oxidation pathway than those on the bare sorbent surfaces. These experimental and simulation results provide a theoretical basis for the design and application of efficient gaseous arsenic adsorbents.

5.
Cell Death Discov ; 9(1): 143, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127677

RESUMO

Vascular endothelial is considered to be a key factor in the pathogenesis of erectile dysfunction (ED). The purpose is to reveal the research trend of the field of ED and vascular endothelium. In addition, the goal is to discover the role and mechanism of vascular endothelium in ED. Bibliometrics and visualization methods based on CiteSpace were selected. We conducted the co-authorship analysis of countries, institutions and authors, co-occurrence analysis of keywords, and co-citation analysis of literature and authors through CiteSpace 6.1.R3. 1431 articles from Web of Science Core Collection (WOSCC) were included in the analysis from 1991 to 2022. We found some influential and cutting-edge nodes in each map, including countries, institutions, authors, articles, etc. Stem cell, therapy, oxidative stress, cavernous nerve injury, radical prostatectomy, fibrosis, erectile function, mesenchymal stem cell, and apoptosis may be hot keywords. In conclusion, the efficacy and mechanisms of stem cells and their derivatives in the treatment of diabetes (DM) ED and cavernous nerve injury (CNI) ED are the future research trends. Stem cells therapy for ED is a hot spot in this field, which side notes that stem cells may work mainly through improving endothelial function. Vascular endothelial cells and VEGF may repair nerve and cavernous smooth muscle directly or indirectly, and finally polish up erectile function.

6.
J Environ Manage ; 334: 117503, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796192

RESUMO

Dye wastewater has become one of the main risk sources of environmental pollution due to its high toxicity and difficulty in degradation. Hydrochar prepared by hydrothermal carbonization (HTC) of biomass has abundant surface oxygen-containing functional groups, and therefore is used as an adsorbent to remove water pollutants. The adsorption performance of hydrochar can be enhanced after improving its surface characteristics through nitrogen-doping (N-doping). In this study, wastewater rich in nitrogen sources such as urea, melamine and ammonium chloride were selected as the water source for the preparation of HTC feedstock. The N atoms were doped in the hydrochar with a content of 3.87%-5.70%, and mainly in the form of pyridinic-N, pyrrolic-N and graphitic-N, which changed the acidity and basicity of the hydrochar surface. The N-doped hydrochar adsorbed methylene blue (MB) and congo red (CR) in wastewater through pore filling, Lewis acid-base interaction, hydrogen bond, and π-π interaction, and the maximum adsorption capacities of those were obtained with 57.52 mg/g and 62.19 mg/g, respectively. However, the adsorption performance of N-doped hydrochar was considerably affected by the acid-base property of the wastewater. In a basic environment, the surface carboxyl of the hydrochar exhibited a high negative charge and thus an enhanced electrostatic interaction with MB. Whereas, the hydrochar surface was positively charged in an acid environment by binding H+, resulting in an enhanced electrostatic interaction with CR. Therefore, the adsorption efficiency of MB and CR by N-doped hydrochar can be tuned by adjusting the nitrogen source and the pH of the wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Biomassa , Vermelho Congo , Poluentes Químicos da Água/química , Azul de Metileno/química , Cinética
7.
Adv Mater ; 35(13): e2208923, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36715052

RESUMO

Despite the promise in whole-tumor cell vaccines, a key challenge is to overcome the lack of costimulatory signals. Here, agonistic-antibody-boosted tumor cell nanovaccines are reported by genetically engineered antibody-anchored membrane (AAM) technology, capable of effectively activating costimulatory pathways. Specifically, the AAM can be stably constructed following genetic engineering of tumor cell membranes with anti-CD40 single chain variable fragment (scFv), an agonistic antibody to induce costimulatory signals. The nanovaccines are versatilely designed and obtained based on the anti-CD40 scFv-anchored membrane and nanotechnology. Following vaccination, the anti-CD40 scFv-anchored membrane nanovaccine (Nano-AAM/CD40) significantly facilitates dendritic cell maturation in CD40-humanized transgenic mice and subsequent adaptive immune responses. Compared to membrane-based nanovaccines alone, the enhanced antitumor efficacy in both "hot" and "cold" tumor models of the Nano-AAM/CD40 demonstrates the importance of agonistic antibodies in development of tumor-cell-based vaccines. To expand the design of nanovaccines, further incorporation of cell lysates into the Nano-AAM/CD40 to conceptually construct tumor cell-like nanovaccines results in boosted immune responses and improved antitumor efficacy against malignant tumors inoculated into CD40-humanized transgenic mice. Overall, this genetically engineered AAM technology provides a versatile design of nanovaccines by incorporation of tumor-cell-based components and agonistic antibodies of costimulatory immune checkpoints.


Assuntos
Anticorpos , Neoplasias , Camundongos , Animais , Antígenos CD40/genética , Antígenos CD40/metabolismo , Neoplasias/terapia , Engenharia Genética , Camundongos Transgênicos , Imunoterapia/métodos
8.
Environ Pollut ; 315: 120430, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36279990

RESUMO

Hydrothermal carbonation (HTC) is an effective method to enhance the fuel quality of biomass in a subcritical water environment, but generates large amounts of wastewater (HTCWW), which was converted through anaerobic digestion (AD) into methane in this study. However, the toxic and refractory substances contained in HTCWW tended to cause operation instability of the AD system. The solid product in HTC of corn stover (CS), named CS hydrochar, was modified with KOH immersion and then added to the AD reactor to improve the methanogenic performance. The results showed that the optimum dosage of modified hydrochar (MCH) was 15 g/L, and the COD removal rate was increased by 19.3% and methane yield was increased by 42.3%-301 mL/g-COD, as the pore and the oxygen-containing functional groups of MCH provided colonization points for microorganisms, and also enhanced the electron transfer efficiency among methanogenic archaea. In addition, the increased alkalinity of MCH due to alkaline modification increased the pH buffering capability, and accelerated the consumption of acetic acid and butyric acid in the early AD stage (0-8 days) and propionic acid in the late AD stage (12-18 days), which then alleviated the organic acid accumulation and reduced the lag period by 2 days. The adverse effects of toxic and refractory substances of HTCWW on the AD performance were also decreased due to the adsorption of MCH at the beginning of the AD process, and latterly the adsorbed substances could be degraded by the microorganisms colonized on the MCH surface. The finding of this study showed AD is a feasible method to recover organic energy contained in HTCWW, and the associated hydrochar can be used as an effective promoter for the AD of HTCWW.


Assuntos
Águas Residuárias , Zea mays , Anaerobiose , Metano , Biomassa , Reatores Biológicos
9.
Mol Ther ; 30(12): 3658-3676, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35715953

RESUMO

The full potential of tumor-infiltrating lymphocyte (TIL) therapy has been hampered by the inadequate activation and low persistence of TILs, as well as inefficient neoantigen presentation by tumors. We transformed tumor cells into artificial antigen-presenting cells (aAPCs) by infecting them with a herpes simplex virus 1 (HSV-1)-based oncolytic virus encoding OX40L and IL12 (OV-OX40L/IL12) to provide local signals for optimum T cell activation. The infected tumor cells displayed increased expression of antigen-presenting cell-related markers and induced enhanced T cell activation and killing in coculture with TILs. Combining OV-OX40L/IL12 and TIL therapy induced complete tumor regression in patient-derived xenograft and syngeneic mouse tumor models and elicited an antitumor immunological memory. In addition, the combination therapy produced aAPC properties in tumor cells, activated T cells, and reprogrammed macrophages to a more M1-like phenotype in the tumor microenvironment. This combination strategy unleashes the full potential of TIL therapy and warrants further evaluation in clinical studies.


Assuntos
Vírus Oncolíticos , Humanos , Animais , Camundongos , Vírus Oncolíticos/genética , Linfócitos do Interstício Tumoral , Células Apresentadoras de Antígenos
10.
Langmuir ; 38(5): 1833-1844, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35094510

RESUMO

Sludge-based biochar could be used to remove phosphate and methylene blue (MB) from water. It is a highly efficient way to treat the sludge and contaminated water synergistically. The high ash content in sludge greatly influenced the adsorption property of the resultant biochar. In this work, the influence of carbonization-activation and acid treating on the adsorption performance of the sludge-based biochar was evaluated. The composition, structure, and surface properties of biochar were improved after acid treating. The biochar was obtained in a sequence of carbonization-activation first and then acid treating, providing the optimal adsorption property. Zn550-H and Zn750-H showed excellent adsorption capacity to phosphate and MB, respectively. The adsorption process was well described by the pseudo-first-order and pseudo-second-order kinetic models. Isothermal studies implied that it was controlled by multiple processes. What is more, sludge-based biochar performed well in the adsorption of phosphate and MB from weakly acidic to alkaline conditions, which was beneficial to utilize the sludge-based biochar in water remediation practically.


Assuntos
Esgotos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Cinética , Azul de Metileno/química , Fosfatos , Água , Poluentes Químicos da Água/análise
11.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086948

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancers worldwide. Despite the promising outcome of immune checkpoint inhibitors and agonist antibody therapies in different malignancies, PDAC exhibits high resistance due to its immunosuppressive tumor microenvironment (TME). Ameliorating the TME is thus a rational strategy for PDAC therapy. The intratumoral application of oncolytic herpes simplex virus-1 (oHSV) upregulates pro-inflammatory macrophages and lymphocytes in TME, and enhances the responsiveness of PDAC to immunotherapy. However, the antitumor activity of oHSV remains to be maximized. The aim of this study is to investigate the effect of the CD40L armed oHSV on the tumor immune microenvironment, and ultimately prolong the survival of the PDAC mouse model. METHODS: The membrane-bound form of murine CD40L was engineered into oHSV by CRISPR/Cas9-based gene editing. oHSV-CD40L induced cytopathic effect and immunogenic cell death were determined by microscopy and flow cytometry. The expression and function of oHSV-CD40L was assessed by reporter cell assay. The oHSV-CD40L was administrated intratumorally to the immune competent syngeneic PDAC mouse model, and the leukocytes in TME and tumor-draining lymph node were analyzed by multicolor flow cytometry. Intratumoral cytokines were determined by ELISA. RESULTS: Intratumoral application of oHSV-CD40L efficiently restrained the tumor growth and prolonged the survival of the PDAC mouse model. In TME, oHSV-CD40L-treated tumor accommodated more maturated dendritic cells (DCs), which in turn activated T helper 1 and cytotoxic CD8+ T cells in an interferon-γ-dependent and interleukin-12-dependent manner. In contrast, the regulatory T cells were significantly reduced in TME by oHSV-CD40L treatment. Repeated dosing and combinational therapy extended the lifespan of PDAC mice. CONCLUSION: CD40L-armed oncolytic therapy endues TME with increased DCs maturation and DC-dependent activation of cytotoxic T cells, and significantly prolongs the survival of the model mice. This study may lead to the understanding and development of oHSV-CD40L as a therapy for PDAC in synergy with immune checkpoint blockade.


Assuntos
Ligante de CD40/administração & dosagem , Carcinoma Ductal Pancreático/terapia , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Simplexvirus , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral , Animais , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Pancreáticas/imunologia
12.
Sci Total Environ ; 803: 149964, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481162

RESUMO

Energy conversion and utilization of sewage sludge (SS) and lignocellulosic biomass are an important measure to deal with environmental pollution and resource utilization. Addressing the waste by-product in a clean way is essential. In this study, solid char fuel (hydrochar) was obtained through co-hydrothermal carbonization of SS with pinewood sawdust (PS), and methane gas was obtained through anaerobic digestion (AD) of hydrothermal carbonization wastewater (HTCWW). The energy conversion performance of the feedstock organics under different HTC conditions (temperature of 160 °C, 220 °C, and 280 °C; reaction time of 0, 2, and 4 h; feedstock liquid-solid mass ratio of 4:1, 10:1, and 16:1), and the mass and energy yields of hydrochar and methane and their influencing factors were emphasized. More than 60% of the energy in SS and PS can be recovered by coupling the HTC-AD process. With the increase in hydrothermal reaction temperature and reaction time, the mass yield of hydrochar decreased, but the higher heating value increased. The maximum energy yield of hydrochar was 86.47% under the HTC temperature of 160 °C, liquid-solid ratio of 10:1, and reaction time of 2 h. The HTCWW obtained at a lower temperature (160 °C) showed the highest cumulative methane yield of 304.16 mL-CH4/g-COD.


Assuntos
Pinus , Esgotos , Anaerobiose , Carbono , Temperatura , Águas Residuárias
13.
Chemosphere ; 287(Pt 3): 132294, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826943

RESUMO

Density functional theory (DFT) was used to study the adsorption of ammonium ion on carbon materials. The effects of single and multiple adjacent functional groups of carbon structures on ammonium ion adsorption were emphasized. The electrostatic potential, adsorption energy, charge transfer, molecular orbital, and dipole moment of different configurations were analyzed. Results showed that the carbonyl group was more likely to adsorb ammonium ion than lactone, carboxyl, and hydroxyl. When the carbon material contained multiple adjacent functional groups at the same time, the adsorption of ammonium ion can be promoted or inhibited due to the interaction among functional groups. The effect of functional groups on the adsorption of π bond in carbon materials was related to the electronegativity of functional groups, i.e., greater electronegativity led to smaller adsorption energy of π bond. Carbon material itself is nonpolar and hydrophobic, so adding oxygen-containing functional groups can increase the dipole moment of carbon material molecules, thereby enhancing its polarity and adsorption capacity.


Assuntos
Compostos de Amônio , Água , Adsorção , Carbono , Interações Hidrofóbicas e Hidrofílicas
14.
Materials (Basel) ; 14(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771900

RESUMO

Although Miura origami has excellent planar expansion characteristics and good mechanical properties, its congenital flaws, e.g., open sections leading to weak out-of-plane stiffness and constituting the homogenization of the material, and resulting in limited design freedom, should also be taken seriously. Herein, two identical Miura sheets, made of carbon fiber/epoxy resin composite, were bonded to form a tubular structure with closed sections, i.e., an origami tube. Subsequently, the dynamic performances, including the nature frequency and the dynamic displacement response, of the designed origami tubes were extensively investigated through numerical simulations. The outcomes revealed that the natural frequency and corresponding dynamic displacement response of the structure can be adjusted in a larger range by varying the geometric and material parameters, which is realized by combining origami techniques and the composite structures' characteristics. This work can provide new ideas for the design of light-weight and high-mechanical-performance structures.

15.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34117053

RESUMO

Currently, high-throughput approaches are lacking in the isolation of antibodies with functional readouts beyond simple binding. This situation has impeded the next generation of cancer immunotherapeutics, such as bispecific T cell engager (BiTE) antibodies or agonist antibodies against costimulatory receptors, from reaching their full potential. Here, we developed a highly efficient droplet-based microfluidic platform combining a lentivirus transduction system that enables functional screening of millions of antibodies to identify potential hits with desired functionalities. To showcase the capacity of this system, functional antibodies for CD40 agonism with low frequency (<0.02%) were identified with two rounds of screening. Furthermore, the versatility of the system was demonstrated by combining an anti-Her2 × anti-CD3 BiTE antibody library with functional screening, which enabled efficient identification of active anti-Her2 × anti-CD3 BiTE antibodies. The platform could revolutionize next-generation cancer immunotherapy drug development and advance medical research.

16.
Materials (Basel) ; 14(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671986

RESUMO

Origami has played an increasingly central role in designing a broad range of novel structures due to its simple concept and its lightweight and extraordinary mechanical properties. Nonetheless, most of the research focuses on mechanical responses by using homogeneous materials and limited studies involving buckling loads. In this study, we have designed a carbon fiber reinforced plastic (CFRP) origami metamaterial based on the classical Miura sheet and composite material. The finite element (FE) modelling process's accuracy is first proved by utilizing a CFRP plate that has an analytical solution of the buckling load. Based on the validated FE modelling process, we then thoroughly study the buckling resistance ability of the proposed CFRP origami metamaterial numerically by varying the folding angle, layer order, and material properties, finding that the buckling loads can be tuned to as large as approximately 2.5 times for mode 5 by altering the folding angle from 10° to 130°. With the identical rate of increase, the shear modulus has a more significant influence on the buckling load than Young's modulus. Outcomes reported reveal that tunable buckling loads can be achieved in two ways, i.e., origami technique and the CFRP material with fruitful design freedoms. This study provides an easy way of merely adjusting and controlling the buckling load of lightweight structures for practical engineering.

17.
Sci Total Environ ; 776: 145922, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647671

RESUMO

Blending lignocellulosic wastes (such as cornstalk, CS) into sewage sludge (SS) for hydrothermal carbonization (HTC) could contribute to the importance of the hydrothermal solid product (hydrochar) as a substitute for fossil fuel. However, the interactions between SS and CS changed the fate of Nitrogen (N), affecting the clean combustion utilization of hydrochar. This study focused on the influence of SS-CS interactions on the redistribution and migration behavior of N during the co-HTC process by tuning the mass ratio of SS to CS (SS:CS), reaction temperature, and residence time. Under the hydrothermal condition of 220 °C, 2 h, and SS:CS = 1:1, the high heating value of hydrochar and the energy recovery efficiency (ERE) respectively reached 15.89 MJ/kg and 71.19%. Further raising the temperature to 250 °C, the hydrochar was enhanced in the coalification degree, whereas ERE decreased to 61.86%. Part of the amino-N in sludge organics was fractured during the co-HTC process and reacted with carbohydrate and intermediate products, such as 5-hydroxymethylfurfural, which degraded from CS, to generate heterocyclic-N compounds (including pyridine, pyrrole, and pyrazine). The remaining amino-N formed pyridine-N, pyrrole-N, and quaternary-N through various solid-solid conversions. The heterocyclic-N polymerized and formed melanoidins, which thereafter polymerized with aromatic clusters to form the N-containing polyaromatic char. Therefore, the N retention rate (NRR) was enhanced and showed a synergistic effect. NRR was increased by raising the proportion of CS or extending time, reaching 57.02% at SS:CS = 1:1 and 8 h. Conversely, rising temperatures resulted in a downward trend of NRR with a phased increase at 220 °C-250 °C.


Assuntos
Nitrogênio , Esgotos , Carbono , Lignina , Temperatura
18.
Mol Ther ; 29(2): 744-761, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33130310

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the major type of pancreatic malignancy with very poor prognosis. Despite the promising results of immune checkpoint inhibitors (ICIs) in some solid tumors, immunotherapy is less effective for PDAC due to its immunosuppressive tumor microenvironment (TME). In this report, we established an immunocompetent syngeneic PDAC model and investigated the effect of oncolytic herpes simplex virus-1 (oHSV) on the composition of TME immune cells. The oHSV treatment significantly reduced tumor burden and prolonged the survival of tumor-bearing mice. Further, by single cell RNA sequencing (scRNA-seq) and multicolor fluorescence-activated cell sorting (FACS) analysis, we demonstrated that oHSV administration downregulated tumor-associated macrophages (TAMs), especially the anti-inflammatory macrophages, and increased the percentage of tumor-infiltrating lymphocytes, including activated cytotoxic CD8+ T cells and T helper (Th)1 cells. Besides, the combination of oHSV and immune checkpoint modulators extended the lifespan of the tumor-bearing mice. Overall, our data suggested that oHSV reshapes the TME of PDAC by boosting the immune activity and leads to improved responsiveness of PDAC to immunotherapy.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Interações entre Hospedeiro e Microrganismos/imunologia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Simplexvirus/genética , Microambiente Tumoral/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Terapia Viral Oncolítica/métodos
19.
Comput Math Methods Med ; 2020: 1394231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089728

RESUMO

Teeth segmentation is a crucial technologic component of the digital dentistry system. The limitations of the live-wire segmentation include two aspects: (1) computing the wire as the segmentation boundary is time-consuming and (2) a great deal of interactions for dental mesh is inevitable. For overcoming these disadvantages, 3D intelligent scissors for dental mesh segmentation based on live-wire is presented. Two tensor-based anisotropic metrics for making wire lie at valleys and ridges are defined, and a timesaving anisotropic Dijkstra is adopted. Besides, to improve with the smoothness of the path tracking back by the traditional Dijkstra, a 3D midpoint smoothing algorithm is proposed. Experiments show that the method is effective for dental mesh segmentation and the proposed tool outperforms in time complexity and interactivity.


Assuntos
Materiais Dentários , Odontologia/métodos , Imageamento Tridimensional/métodos , Telas Cirúrgicas , Algoritmos , Anisotropia , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes
20.
J Environ Manage ; 244: 1-12, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31103729

RESUMO

Activated carbon supported nano zero-valent iron material (NZVI/AC) was prepared and added to an anaerobic digestion tank to reduce the toxicity inhibition of phenols and increase the methane yield of phenol-containing organic wastewater (POW). The anaerobic digestion (AD) characteristics, including conversion rate of organic substances, removal rate of phenol, and methane yield of POW with different concentrations of phenol were studied, and moreover, the enhancing effects of NZVI/AC on the AD of POW were focused. When the concentration of phenol was below 500 mg/L, the methane yield from AD of POW was 387.5 mL, which was 10.71% higher than that from control organic water without phenol, however, phenol concentrations greater than 1000 mg/L severely inhibited AD, and methane yield was only 50% of the control sample. Indicating that anaerobic microorganisms had a certain degree of tolerance to phenol, and low concentration of phenol could promote AD of organic water although the phenol with high concentration showed severe inhibition. The methane yield increased due to the probable conversion of phenol to methane by microbial actions. In the AD of POW with 500 mg/L phenol, the conversion rate of organic substances increased from 37.49% (control group without any accelerant) to 66.56% after adding NZVI/AC. The removal rate of phenol also increased from 39.03% to 81.32%. Cumulative methane yield increased by 145.5%-810 mL compared with the control group. The AC carrier in NZVI/AC exerted a good adsorption effect on phenols, reducing the concentration of phenols in the solution and thus minimizing their toxic effects on microbial activity. The NZVI loaded on AC particles strengthened the electron transfer between methanogens by its good electrical conductivity, and then promoted the AD performance of organic matter. Furthermore, NZVI exerted a micro-electrolytic effect on phenolic substances, which could increase the removal rate of phenol. Therefore, NZVI/AC could be used as an efficient accelerant for the AD of POW to enhance the AD process.


Assuntos
Carvão Vegetal , Águas Residuárias , Anaerobiose , Ferro , Fenol , Fenóis , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...