Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 169: 115922, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38011786

RESUMO

Regenerating family protein 3 A (Reg3A) is highly expressed in a variety of organs and inflammatory tissues, and is closely related to tumorigenesis and cancer progression. However, clinical statistics show that high expression of Reg3A is associated with better prognosis in colorectal cancer (CRC) patients, suggesting a tumor-suppressive effect. The precise action and underlying mechanism of Reg3A in CRC remain controversial. The present study sought to investigate the relationship among Reg3A expression, CRC development, and immune cell alteration in patients using the TCGA, GEPIA, PrognoScan, TIMER and TISIDB databases. Reg3A-overexpressing LoVo cell line (LoVo-Reg3A), a representative of colon adenocarcinoma (COAD), was constructed and the action of Reg3A was assessed in a xenograft nude mouse model. Our bioinformatical analyses revealed that Reg3A upregulation is highly associated with CRC, along with increased frequency of immune cell infiltration. In the xenograft nude mice, Reg3A overexpression offered a tumor-suppressive effect by inhibiting cell proliferation and promoting apoptosis. The result of RNA-seq suggested a positive regulation of leukocytes and an upregulation of T cells in LoVo-Reg3A tumor tissue. CD4+ and CD8+ T cells in tumors, splenic Reg3A-reactive IFN-γ+/CD4+ T cells, and serum TNF-α, IFN-γ and IL-17 were significantly increased by Reg3A overexpression. In the ex vivo co-culture experiment, elevated cytotoxic effect, increased proportion of CD3ε+ T cells, and upregulated expressions of TNF-α, IFN-γ and IL-17 were detected in the PBMCs isolated from LoVo-Reg3A cell-xenografted nude mice. In conclusion, high expression of Reg3A could activate and recruit T cells in COAD leading to the cytotoxic tumor-suppressive effect.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Neoplasias do Colo/genética , Interleucina-17 , Camundongos Nus , Fator de Necrose Tumoral alfa
2.
Dalton Trans ; 52(6): 1595-1601, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36651815

RESUMO

Cyclometalated Ir(III) complexes as photosensitizers (PSs) have attracted widespread attention because of their good photostability and efficient 1O2 production ability. However, their strong absorption in the UV-vis region severely limits their applications in photodynamic therapy (PDT) because the short wavelength illuminating light can be easily absorbed by the skin and subcutaneous adipose tissue causing damage to the patient's normal tissue. Herein, mono- and tetra-nuclear Ir(III) complex-porphyrin conjugates are rationally designed and synthesized, especially [TPP-4Ir]4+ exhibits obvious aggregation-induced emission (AIE) characteristics. PSs comprising Ir(III) complex-porphyrin conjugates self-assembled as nanoparticles (NPs) are successfully achieved. The obtained [TPP-Ir]+ NPs and [TPP-4Ir]4+ NPs exhibit long wavelength absorption (500-700 nm) and near-infrared emission (635-750 nm), successfully overcoming the inherent defects of short wavelength absorption of traditional Ir(III) complexes. Moreover, [TPP-4Ir]4+ NPs exhibit good biocompatibility, high 1O2 generation ability, low half-maximal inhibitory concentration (IC50) (0.47 × 10-6 M), potent cytotoxicity toward cancer cells and superior cellular uptake under white light irradiation. This work extends the scope for transition metal complex PSs with promising clinical applications.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Luz
3.
Dalton Trans ; 51(42): 16119-16125, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218133

RESUMO

Photodynamic therapy (PDT) is a promising cancer treatment method. Traditional small-molecule photosensitizers (PSs) suffer from low intersystem crossing (ISC) ability and aggregation-caused quenching (ACQ), which adversely affects the luminous efficiency and singlet oxygen (1O2) yield of PSs in the aggregated state. Ir(III) complexes are promising PSs with long excited-state lifetime, good photophysical and photochemical properties and large Stokes shifts. Aggregation-induced emission (AIE) characteristics could reduce the nonradiative recombination and improve the ISC ability of excited states through the restriction of the intramolecular motions in aggregated states. Accordingly, two AIE-active Ir(III) complexes Ir-1-N+ and Ir-2-N+ were successfully designed and obtained based on Schiff base ligands. Experimental results showed that Ir-1-N+ and Ir-2-N+ have good photophysical properties and the corresponding nanoparticles (NPs) have good water solubility and 1O2 generation ability. Notably, Ir-2-N+ NPs can be efficiently taken up by mouse breast cancer cells (4T1 cells) with good biocompatibility, low dark toxicity and excellent phototoxicity. This work demonstrates a versatile strategy for exploiting efficient transition metal PSs with a cationic ligand in PDT.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Camundongos , Cátions/química , Ligantes , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Bases de Schiff , Linhagem Celular Tumoral
4.
Chem Commun (Camb) ; 58(72): 10056-10059, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35993197

RESUMO

The integration of an aggregation induced emission (AIE)-active Ir(III) complex and upconversion nanoparticles (UCNPs) has achieved a NIR-irradiated photosensitizer (PS), UCNPs@Ir-2-N. This PS has satisfactory biocompatibility, excellent phototoxicity, good accumulation in cells and high 1O2 generation ability, thereby effectively killing 4T1 mouse cancer cells in vitro. This work has potential for future photodynamic therapy (PDT) applications.


Assuntos
Nanopartículas , Fotoquimioterapia , Animais , Irídio/farmacologia , Camundongos , Fármacos Fotossensibilizantes/farmacologia
5.
Nat Commun ; 13(1): 547, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087063

RESUMO

Understanding ion transport kinetics and electrolyte-electrode interactions at electrode surfaces of batteries in operation is essential to determine their performance and state of health. However, it remains a challenging task to capture in real time the details of surface-localized and rapid ion transport at the microscale. To address this, a promising approach based on an optical fiber plasmonic sensor capable of being inserted near the electrode surface of a working battery to monitor its electrochemical kinetics without disturbing its operation is demonstrated using aqueous Zn-ion batteries as an example. The miniature and chemically inert sensor detects perturbations of surface plasmon waves propagating on its surface to rapidly screen localized electrochemical events on a sub-µm-scale thickness adjacent to the electrode interface. A stable and reproducible correlation between the real-time ion insertions over charge-discharge cycles and the optical plasmon response has been observed and quantified. This new operando measurement tool will provide crucial additional capabilities to battery monitoring methods and help guide the design of better batteries with improved electro-chemistries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...