Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036928

RESUMO

This study presents an efficient approach for the precise detection of chlorine gas (Cl2) and hydrogen chloride (HCl), harmful pollutants frequently emitted from chlor-alkali and various industrial processes. These substances, even in trace amounts, pose significant health risks. Ion mobility spectrometry (IMS), known for its sensitivity in pollutant detection, traditionally struggles to differentiate between Cl2 and HCl due to the similarity of their product ions, Cl-. To overcome this limitation, we introduce a novel technique combining dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with an automatic semiconductor cooling system. This unique combination utilizes the differential cryogenic removal efficiencies of Cl2 and HCl to segregate these gases before analysis. By applying DANP-IMS, we achieved selective measurement of Cl- ion signal intensities under both standard and cryogenic conditions, facilitating the accurate quantification of total chlorine and Cl2 levels. We then determined HCl concentrations by deducting the Cl2 signal from the total chlorine readings. Our approach demonstrated detection limits of 2.0 parts per billion (ppb) for Cl2 and 0.8 ppb for HCl, across a linear detection range of 0-200 ppb. Moreover, our method's capability for real-time atmospheric monitoring of Cl2 and HCl near industrial sites underscores its utility for environmental monitoring, offering a robust solution for the separate and precise measurement of these pollutants.

2.
ACS Nano ; 17(22): 22580-22590, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961989

RESUMO

Biodegradable and biocompatible microscale energy storage devices are very crucial for environmentally friendly microelectronics and implantable medical applications. Herein, a biodegradable and biocompatible microsupercapacitor (BB-MSC) with satisfying overall performance is realized via the combination of three-dimensional (3D) printing technique and biodegradable materials. Due to the 3D-interconnected structure of electrodes and elaborated design of electrolyte, the as-prepared BB-MSC exhibits superior overall performance than most of biodegradable devices, including a wide operation voltage of 1.8 V, high areal specific capacitance of 251 mF/cm2, good cycle stability, and favorable low-temperature resistance (-20 °C), demonstrative of reliability and practicality of our devices even in frosty environments. Importantly, the smooth degradation has been realized for the BB-MSC after being buried in natural soil for ∼90 days, and its implantation does not affect the healthy status of SD rats. Therefore, this work explores avenues for the design and construction of environmentally friendly and biocompatible microscale energy storage devices.


Assuntos
Ratos Sprague-Dawley , Animais , Ratos , Reprodutibilidade dos Testes , Capacitância Elétrica , Eletrodos , Fenômenos Físicos
3.
RSC Adv ; 9(21): 11659-11663, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35516988

RESUMO

We report on the two-dimensional self-assembly of C 2v-symmetric [1,1':3',1''-terphenyl]-3,3'',5,5''-tetracarboxylic acid (TPTA) at the solid/liquid interface by using scanning tunneling microscopy (STM). Two kinds of different self-assembly structure, i.e. a close-packed and porous rosette structure, are formed by TPTA molecules through intermolecular hydrogen bonds. When adding coronene (COR) as a guest into the TPTA assembly, structural transformation from a densely packed row structure to a rosette network structure is observed. It was found that two kinds of cavities with different sizes in the rosette network structure can be used to realize the selective co-adsorption of guest molecules with appropriate shape and size. Three-component 2D host-guest structures were successfully constructed by using 1,2,3,4,5,6-hexakis(4-bromophenyl)benzene (HBPBE) and copper phthalocyanine (CuPc) as guest molecules.

4.
J Environ Sci (China) ; 25 Suppl 1: S36-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25078836

RESUMO

A simple route of in situ polymerization by the chemical oxidation method was successfully employed to synthesize polyaniline/dysprosium oxide (PANI/Dy2O3) composites. The synthesized materials were characterized by Fourier transform infrared spectra and X-ray diffraction. The thermal stability of the composite was studied by thermogravimetry (TG). The electrochemical performance of the composites was investigated by cyclic voltammetry and alternating current impedance spectroscopy with a three-electrode system. TG results suggested that the thermal stability of PANI/Dy2O3 composites showed a tendency to first increase and then decrease with increasing Dy2O3 amount. Electrochemical experiments indicated that the composite electrodes showed a lower capacitance than that of pure PANI, which may be attributed to the interaction between PANI and Dy2O3 in the composites.


Assuntos
Eletroquímica , Temperatura , Compostos de Anilina/síntese química , Compostos de Anilina/química , Disprósio/química , Eletricidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA