Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(6): 3130-3140, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38436057

RESUMO

Nitrite widely exists in meat products, and has the functions of bacteriostasis, antisepsis, and color development. However, in an acidic environment, nitrite will react with amines, and further generate nitrosamines with carcinogenic and teratogenic effects. Polyphenols have good antioxidant and nitrite-scavenging effects. This study aimed to evaluate the inhibitory effects of gallic acid, catechin, and procyanidin B2 on the nitrosation reaction under stomach simulating conditions and discuss the potential inhibitory mechanism. The nitrite scavenging rate and nitrosamine synthesis blocking rate of gallic acid, catechin, and procyanidin B2 under different reaction times and contents was determined by UV-vis spectrophotometry. The possible products of the reaction of the three polyphenols with nitrite were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) to reveal the mechanism of inhibiting nitrification. The results showed that the scavenging rate of the three polyphenols on nitrite and the blocking rate of nitrosamine synthesis increased with the increase of the content and reaction time. The ability of the three polyphenols to inhibit nitrosation was catechin > procyanidin B2 > gallic acid. HPLC-MS analysis showed that under simulated gastric juice conditions, the three phenolics were oxidized by nitrous acid to form their semiquinone radicals as the intermediates and nitrosated derivatives, while nitrite might be converted to ˙NO. These results suggested that gallic acid, catechin, and procyanidin B2 could inhibit nitrosation reactions in an acidic environment and may be used as food additives to reduce nitrite residues and nitrosamines in food.


Assuntos
Biflavonoides , Catequina , Nitrosaminas , Proantocianidinas , Ácido Gálico/farmacologia , Nitritos , Nitrosação , Polifenóis , Estômago
2.
Small ; 19(26): e2205187, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967558

RESUMO

Chiral transition metal oxide nanoparticles (CTMOs) are attracting a lot of attention due to their fascinating properties. Nevertheless, elucidating the chirality induction mechanism often remains a major challenge. Herein, the synthesis of chiral cobalt oxide nanoparticles mediated by histidine (Co3 O4 @L-His and Co3 O4 @D-His for nanoparticles synthesized in the presence of L- and D-histidine, respectively) is investigated. Interestingly, these CTMOs exhibit remarkable and tunable chiroptical properties. Their analysis by x-ray photoelectron, Fourier transform infrared, and ultraviolet-visible absorption spectroscopy indicates that the ratio of Co2+ /Co3+ and their interactions with the imidazole groups of histidine are behind their chiral properties. In addition, the use of chiral Co3 O4 nanoparticles for the development of sensitive, rapid, and enantioselective circular dichroism-based sensors is demonstrated, allowing direct molecular detection and discrimination between cysteine or penicillamine enantiomers. The circular dichroism response of the chiral Co3 O4 exhibits a limit of detection and discrimination of cysteine and penicillamine enantiomers as low as 10 µm. Theoretical calculations suggest that the ligand exchange and the coexistence of both species adsorbed on the oxide surface are responsible for the enantiomeric discrimination. This research will enrich the synthetic approaches to obtain CTMOs and enable the extension of the applications and the discovery of new chiroptical properties.

3.
ACS Nano ; 16(12): 19789-19809, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36454684

RESUMO

Chiral Au nanorods (c-Au NRs) with diverse architectures constitute an interesting nanospecies in the field of chiral nanophotonics. The numerous possible plasmonic behaviors of Au NRs can be coupled with chirality to initiate, tune, and amplify their chiroptical response. Interdisciplinary technologies have boosted the development of fabrication and applications of c-Au NRs. Herein, we have focused on the role of chirality in c-Au NRs which helps to manipulate the light-matter interaction in nontraditional ways. A broad overview on the chirality origin, chirality transfer, chiroptical activities, artificially synthetic methodologies, and circularly polarized applications of c-Au NRs will be summarized and discussed. A deeper understanding of light-matter interaction in c-Au NRs will help to manipulate the chirality at the nanoscale, reveal the natural evolution process taking place, and set up a series of circularly polarized applications.

4.
Eur J Pharmacol ; 931: 175186, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35977595

RESUMO

Tumor chemoresistance is often a major cause for the failure of chemotherapy. The resistance of hepatocellular carcinoma (HCC) cells to sorafenib significantly limits its therapeutic effect in HCC patients. For the first time, we found that FXYD domain-containing ion transport regulator 5 (FXYD5) is highly expressed in sorafenib-resistant HCC cells. In addition, the protein expression level of FXYD5 was markedly higher in HCC tissues than in paracancerous tissues. Remarkably, downregulation of FXYD5 expression in Huh7/sora cells reversed their resistance to sorafenib. Moreover, overexpression of FXYD5 reduced the sensitivity of HCC cells to sorafenib, while the downregulation of its expression in HCC cells had the opposite effect. We also found abnormal activation of the Akt/mTOR signaling pathway in Huh7/sora cells. Furthermore, MK2206, an Akt inhibitor, was found to significantly increase the sensitivity of HCC cells to sorafenib. More importantly, the expression level of p-Akt was positively correlated with the expression of FXYD5 in HCC tissues. Therefore, mechanistically, FXYD5 enhances the resistance of HCC cells to sorafenib by activating the Akt/mTOR signaling pathway. In conclusion, this study showed that the activation of the FXYD5/Akt/mTOR signaling axis plays key role in the resistance of HCC cells to sorafenib, and FXYD5 may represent a new potential target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Canais Iônicos/metabolismo , Neoplasias Hepáticas/patologia , Proteínas dos Microfilamentos/metabolismo , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sorafenibe/farmacologia , Serina-Treonina Quinases TOR/metabolismo
5.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35564107

RESUMO

Surface-enhanced Raman spectroscopy (SERS) technology has been regarded as a most efficient and sensitive strategy for the detection of pollutants at ultra-low concentrations. Fabrication of SERS substrates is of key importance in obtaining the homogeneous and sensitive SERS signals. Cellulose filter papers loaded with plasmonic metal NPs are well known as cost-effective and efficient paper-based SERS substrates. In this manuscript, face-to-face assembly of silver nanoplates via solvent-evaporation strategies on the cellulose filter papers has been developed for the SERS substrates. Furthermore, these developed paper-based SERS substrates are utilized for the ultra-sensitive detection of the rhodamine 6G dye and thiram pesticides. Our theoretical studies reveal the creation of high density hotspots, with a huge localized and enhanced electromagnetic field, near the corners of the assembled structures, which justifies the ultrasensitive SERS signal in the fabricated paper-based SERS platform. This work provides an excellent paper-based SERS substrate for practical applications, and one which can also be beneficial to human health and environmental safety.

6.
RSC Adv ; 12(11): 6738-6747, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424638

RESUMO

This study aimed to explore the influence of gardenia yellow on in vitro wheat starch digestion. The influence of gardenia yellow on the digestion properties of starch was determined through in vitro digestion, and its action mechanism on slow starch digestion was revealed by laser scanning confocal microscopy, enzymatic inhibition dynamics, and other means of characterization. Results showed that gardenia yellow could inhibit starch digestion, significantly increase the resistant starch and slowly digestible starch contents in starch (P < 0.05), and trigger the decrease in glycemic and hydrolysis indices. Furthermore, gardenia yellow could spontaneously bind to the catalytic sites of α-amylase and α-glucosidase, affect their secondary structures through vdW force and hydrophobic interaction, and reduce their catalytic abilities to inhibit the digestion process of wheat starch. Therefore, the interactions of gardenia yellow with starch and digestive enzymes jointly promote the slow digestion of starch.

7.
Front Nutr ; 8: 664976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712684

RESUMO

White kidney beans contain α-amylase inhibitors that can be used in diet for weight reduction. In this study, we investigated the potential of white kidney bean (phaseolus vulgaris L.) extract enriched in α-amylase inhibitor as a food additive in yogurt to regulate blood glucose in hyperglycemic animals. Five groups of C57BL/6J mice were fed for 8 weeks with standard chow diets, high-fat diets (HFD), or high-fat diets with supplement of α-amylase inhibitor in white kidney beans (P. vulgaris extract, PVE), yogurt (Y), and PVE added yogurt (YPVE), respectively. The HFD weakened glucose tolerance and caused insulin resistance in mice, and changed the characteristics of intestinal flora. The intervention of Y, PVE, and YPVE decreased blood glucose, insulin, hyperlipidemia, and inflammatory cytokine levels in mice fed with HFD. Moreover, the YPVE could regulate the components of host intestinal microbiota toward a healthy pattern, significantly increased the metabolic-related flora Corynebacterium, Granulicatella, and Streptococcus, while it decreased Paraprevotella and Allobaculum. Thus, YPVE markedly increased functions of "Amino Acid Metabolism," "Energy Metabolism," "Nucleotide Metabolism," and declined functions of "Glycan Biosynthesis and Metabolism." Consequently, YPVE could be developed as a new functional food because of its beneficial prebiotic properties in the metabolic syndrome.

8.
Chem Soc Rev ; 50(6): 3738-3754, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33586721

RESUMO

From a geometrical perspective, a chiral object does not have mirror planes or inversion symmetry. It exhibits the same physical properties as its mirror image (enantiomer), except for the chiroptical activity, which is often the opposite. Recent advancements have identified particularly interesting implications of chirality on the optical properties of metal nanoparticles, which are intimately related to localized surface plasmon resonance phenomena. Although such resonances are usually independent of the circular polarization of light, specific strategies have been applied to induce chirality, both in assemblies and at the single-particle level. In this tutorial review, we discuss the origin of plasmonic chirality, as well as theoretical models that have been proposed to explain it. We then summarise recent developments in the synthesis of discrete nanoparticles with plasmonic chirality by means of wet-chemistry methods. We conclude with a discussion of promising applications for discrete chiral nanoparticles. We expect this tutorial review to be of interest to researchers from a wide variety of disciplines where chiral plasmonics can be exploited at the nanoparticle level, such as chemical sensing, photocatalysis, photodynamic or photothermal therapies, etc.

9.
Food Sci Nutr ; 8(3): 1315-1324, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32180941

RESUMO

SCOPE: Phaseolus vulgaris L. is rich in alpha-amylase inhibitor and has been used for reducing glycemia and calories absorption through preventing or delaying the digestion of complex carbohydrate. A randomized, double-blinded, placebo-controlled study was conducted on obese volunteers to evaluate the degree of significate weight loss by regular intake Phaseolus vulgaris cultivated from Southwestern region of China. METHOD: The volunteers were divided into two groups, homogeneous for age, gender, and body weight. Phaseolus vulgaris extract or placebo was given 2,400 mg per day before each daily meal for 35 consecutive days. Each subject's body weight, fat mass, body mass index, blood biochemical parameters, skinfold fat thickness, and waist/hip circumferences were monitored and analyzed. RESULT AND CONCLUSION: As a result, the average amount of weight lost by the Phaseolus vulgaris extract group was 2.24 kg (average of 0.448 kg per week), compared with a 0.29 kg weight loss (average of 0.058 kg per week) in placebo group after 35 days. The differences between groups were significant (p < .01). The body mass index decreased by an average of 0.79, and the body fat decreased by 1.53% on average compared to baseline (p < .05). The thickness of subcutaneous fat was significantly reduced at the four measurement points, and the decrease of waist circumference and hip circumference was significant as well. No adverse or side effects were observed during the trial period. The results indicate that Phaseolus vulgaris extract can significantly induce weight loss in a short time period.

10.
Int J Food Sci Nutr ; 70(3): 267-284, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30185085

RESUMO

The main phenol in mate and coffee, 5-caffeoylquinic-acid (5-CQA), and its relevant microbial metabolites, dihydrocaffeic (DHCA) and dihydroferulic (DHFA) acids, have shown oxidative-stress protective effects in HepG2 cells. To evaluate possible endothelial-protective effects of the extracts and compounds, endothelial EA.hy926 cells were pre-treated with yerba mate (YME) and green coffee bean (GCBE) phenolic extracts, 5-CQA, DHCA and DHFA and afterwards stressed with tumour-necrosis-factor-alpha (TNF-α). Then oxidative-stress markers and endothelial-nitric-oxide-synthase levels were studied. TNF-α (10 ng/mL, 24 h) depleted reduced glutathione (GSH) and eNOS levels, increased reactive oxygen species (ROS) production, glutathione peroxidase (GPx) and reductase (GR) activities, and protein oxidation (carbonyl groups, CG) in EA.hy926 cells. Pre-treatment with YME, GCBE, 5-CQA, DHCA at certain physiological concentrations, lowered ROS production, recovered depleted GSH, reduced GR and GPx activities, and CG levels, and enhanced eNOS concentration.. YME, GCBE and 5-CQA show antioxidant effects in endothelial cells playing DHCA an important role in such protection; moreover, the extracts, 5-CQA, DHCA and DHFA increased eNOS levels.


Assuntos
Ácidos Cafeicos/farmacologia , Café/química , Endotélio Vascular/efeitos dos fármacos , Ilex paraguariensis/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ácido Quínico/análogos & derivados , Fator de Necrose Tumoral alfa/farmacologia , Antioxidantes/farmacologia , Linhagem Celular , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido Quínico/farmacologia , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Food Sci Nutr ; 68(2): 188-200, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27609024

RESUMO

Red grape pomace (RGP) is a major winery by-product with interesting applications due to its high phenolic content and antioxidant capacity. Effects of in vitro gastrointestinal digestion and storage on the phenolic content and antioxidant capacity of RGP were studied. RGP polyphenols were stable under stomach-mimicking conditions and more sensitive to small intestine conditions, reducing anthocyanins and flavonols. After 3- and 6-month storage, at either 4 or 25 °C, there were no changes in the total phenolic and condensed tannin content, or antioxidant capacity (evaluated by ABTS, FRAP, ORAC assays); however, after 9 months these parameters decreased. Contrarily, chromatic b* values were higher, thus the samples had more intense red color, which may be related to the increased condensed tannin content. Storage time or temperature induced no changes in microbiological load. RGP preserves high antioxidant capacity after storage and in vitro digestion and thus presents potential as a functional ingredient or nutraceutical.


Assuntos
Antioxidantes/análise , Armazenamento de Alimentos , Polifenóis/análise , Vitis/química , Antocianinas/análise , Suplementos Nutricionais/análise , Digestão , Contaminação de Alimentos , Microbiologia de Alimentos , Proantocianidinas/análise , Vitis/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...