Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141902, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582158

RESUMO

Sediment siltation has been regarded as the serious challenge in sewer system, which dominantly root in the gelatinous extracellular polymeric substance (EPS) structure and cohesive ability. Considering the crucial roles of divalent cation bridging and macromolecular biopolymer winding in sediment EPS formation and adhesive behavior, an innovative combination strategy of sodium pyrophosphate (SP)-mediated divalent cation chelation and alkaline biopolymer hydrolysis was developed to degenerate sediment adhesion. At the SP dosage of 0.25 g/g TS and the alkaline pH 12, the SP + pH 12 treatment triggered structural transformation of aromatic proteins (α-helix to ß-turn) and functional group shifts of macromolecular biopolymers. In this case, the deconstruction and outward dissolution of gelatinous biopolymers were achievable, including proteins (tyrosine-like proteins, tryptophan-like proteins), humic acids, fulvic acids, polysaccharides and various soluble microbial products. These were identified as the major driving forces for sediment EPS matrix disintegration and bio-aggregation deflocculation. The extraction EPS content was obviously increased by 18.88 mg COD/g TS. The sediment adhesion was sensitive to EPS matrix damage and gelatinous biopolymer deconstruction, leading to considerable average adhesion degeneration to 0.98 nN with reduction rate of 78.32%. As such, the sediments could be disrupted into dispersive fragments with increased surface electronegativity and electric repulsion (up to -45.6 mV), thereby the sediment resistance to hydraulic erosion was impaired, providing feasibility for in-situ sediment floating and removal by gravity sewage flow in sewer.


Assuntos
Esgotos , Biopolímeros/química , Hidrólise , Esgotos/química , Quelantes/química , Eliminação de Resíduos Líquidos/métodos , Cátions/química , Concentração de Íons de Hidrogênio , Matriz Extracelular de Substâncias Poliméricas/química
2.
Int J Biol Macromol ; 253(Pt 7): 127463, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37852397

RESUMO

Variations in the structure and activities of polysaccharides from Tetrastigma hemsleyanum Diels et Gilg fermented by Sanghuangporus sanghuang fungi were investigated. Compare with the unfermented polysaccharide (THDP2), the major monosaccharide composition and molecular weight of polysaccharide after fermentation (F-THDP2) altered dramatically, which caused galactose-induced conversion from glucose and one-third of molecular weight. F-THDP2 had a molecular weight of 1.23 × 104 Da. Moreover, the glycosidic linkage of F-THDP2 varied significantly, a 1, 2-linked α-d-Galp and 1, 2-linked α-d-Manp backbone was established in F-THDP2, which differed from that of 1, 4-linked α-d-Glcp and 1, 4-linked ß-d-Galp in THDP2. In addition, F-THDP2 showed a more flexible chain conformation than that of THDP2 in aqueous solution. Strikingly, F-THDP2 exhibited superior inhibitory effects on HeLa cells via Fas/FasL-mediated Caspase-3 signaling pathways than that of the original polysaccharide. These variations in both structure and biological activities indicated that fermentation-mediated modification by Sanghuangporus sanghuang might a promising novel method for the effective conversion of starch and other polysaccharides from Tetrastigma hemsleyanum Diels et Gilg into highly bioactive biomacromolecules, which could be developed as a potential technology for use in the food industry.


Assuntos
Polissacarídeos , Vitaceae , Humanos , Células HeLa , Fermentação , Polissacarídeos/farmacologia , Polissacarídeos/química , Vitaceae/química
3.
Sci Total Environ ; 808: 152203, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34890666

RESUMO

Traditional air or oxygen injection is an effective and economical mitigation strategy for sulfide control in pressure sewers, but it is not suitable for gravity sewers due to the low solubility of oxygen in water under normal atmospheric conditions. Herein, an air-nanobubble (ANB) injection method was proposed for sulfide mitigation in gravity sewers, and its sulfide control efficiency was evaluated by long-term laboratory gravity sewer reactors. The results showed that an average inhibition rate of 45.36% for sulfide was obtained when ANBs were implemented, which was 3.75 times higher than that of the traditional air injection method, revealing the effectiveness and feasibility of the ANB injection method. As suggested by microbial community analysis of sewer biofilms, the relative abundance of sulfate-reducing bacteria (SRB) decreased 40.57% while that of sulfur oxidizing bacteria (SOB) increased 215.27% in the presence of ANBs, indicating that sulfide mitigation by ANB injection included both the inhibition of sulfide production and the oxidation of dissolved sulfide. The specific cost consumption of ANB injection was 1.7 $/kg-S, which was only 6.85% of that of traditional air injection (24.8 $/kg-S), suggesting that the sustainable supply of oxygen based on ANB injection is not only environmentally but also economically beneficial for sulfide mitigation. The findings of this study may provide an efficient sulfide mitigation strategy for the management of corrosion and malodour issues in the poorly ventilated gravity sewers.


Assuntos
Sulfeto de Hidrogênio , Esgotos , Bactérias , Biofilmes , Oxigênio , Sulfetos
4.
J Hazard Mater ; 402: 123792, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254801

RESUMO

With the increasing use of drugs in cities, the sewer is becoming the most suitable place for antibiotic accumulation and transfer. In order to reveal the occurrence and fate of antibiotic sewage during pipeline migration, we used an anaerobic reactor device to simulate the concentration change of minocycline in the sewer and its impact on the sewage quality. The results showed that 90.8 % of minocycline was removed during sewer transportation. In the presence of minocycline, although the consumption of Chemical Oxygen Demand and total nitrogen in the sewage did not change significantly, the consumption rate of total phosphorus, nitrate nitrogen and the growth rate of ammonia nitrogen at the front end of the pipeline were decreased from 29.4 %, 86.3 %, 60.3 % to 3.7 %, 81.5 %, 18.3 % respectively. Minocycline inhibited the reduction of SO42-, while also reducing the production of H2S gas and increasing the release of CH4 gas. Moreover, the decline in the abundance of functional bacteria such as phosphorus accumulating organisms was consistent with the consumption of sewage nutrients. This experiment provides data support for the risk of wastewater leakage of medical and pharmaceutical wastewater into domestic sewage, and will helps to maintain the safe operation of actual sewage pipes.


Assuntos
Microbiota , Esgotos , Reatores Biológicos , Cidades , Minociclina , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...