Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inflamm Res ; 17: 641-653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328560

RESUMO

Objective: In this study, we investigated the effect and mechanism of action of eugenol on oxidized low-density lipoprotein (ox-LDL)-induced abnormal proliferation and migration of human vascular smooth muscle cells (HVSMCs). Methods: HVSMCs were treated with 100 ug/mL ox-LDL for 24 hours to establish a cell model. After 1-hour pretreatment, eugenol at concentrations of 5, 25, and 50 uM was added. Cell viability was assessed using an MTT assay, PCNA expression was detected using Western blot, cell cycle distribution was analyzed using flow cytometry, and cell migration ability was evaluated using wound healing and Transwell migration assays. To investigate the mechanisms, Ang II receptors were inhibited by 1000 nM valsartan, MFG-E8 was knocked down by shRNA, MCP-1 was inhibited by siRNA, and MFG-E8 was overexpressed using plasmids. Results: The findings from this study elucidated the stimulatory impact of ox-LDL on the proliferation and functionality of HVSMCs. Different concentrations of eugenol effectively mitigated the enhanced activity of HVSMCs induced by ox-LDL, with 50 uM eugenol exhibiting the most pronounced inhibitory effect. Flow cytometry and Western blot results showed ox-LDL reduced G1 phase cells and increased PCNA expression, while 50 uM eugenol inhibited ox-LDL-induced HVSMC proliferation. In wound healing and Transwell migration experiments, the ox-LDL group showed larger cell scratch filling and migration than the control group, both of which were inhibited by 50 uM eugenol. Inhibiting the Ang II/MFG-E8/MCP-1 signaling cascade mimicked eugenol's effects, while MFG-E8 overexpression reversed eugenol's inhibitory effect. Conclusion: Eugenol can inhibit the proliferation and migration of ox-LDL-induced HVSMCs by inhibiting Ang II/MFG-E8/MCP-1 signaling cascade, making it a potential therapeutic drug for atherosclerosis.

2.
Bioresour Technol ; 394: 130307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199442

RESUMO

Continuous thermophilic composting (CTC) is potentially helpful in shortening the composting cycle. However, its universal effectiveness and the microbiological mechanisms involved are unclear. Here, the physicochemical properties and bacterial community dynamics during composting of distilled grain waste in conventional and CTC models were compared. CTC accelerated the organic matter degradation rate (0.2 vs. 0.1 d-1) and shortened the composting cycle (24 vs. 65 d), mainly driven by the synergism of bacterial genera. Microbial analysis revealed that the abundance of Firmicutes was remarkably improved compared to that in conventional composting, and Firmicutes became the primary bacterial phylum (relative abundance >70 %) during the entire CTC process. Moreover, correlation analysis demonstrated that bacterial composition had a remarkable effect on the seed germination index. Therefore, controlling the composting process under continuous thermophilic conditions is beneficial for enhancing composting efficiency and strengthening the cooperation between bacterial genera.


Assuntos
Compostagem , Solo , Bactérias , Firmicutes , Esterco
3.
J Ophthalmol ; 2023: 3110478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700783

RESUMO

Purpose: To explore the correlation between the axial length (AL) difference (myopic and nonmyopic eye) and the refractive error in children with unilateral myopia anisometropia (UMA) and to elucidate its clinical application in the process of Ortho-K lenses review following nonstop wearing. Methods: This study retrospectively analyzed the data of 70 children with UMA (age, 8-15 years) whose myopic eyes were treated with Ortho-K lenses. The spherical equivalent refractive errors (SERE) of the myopic eye ranged from -0.75 D to -4.25 D, and astigmatism was no less than -1.50 D. In addition, SERE of nonmyopic eyes were no less than -0.50 D. AL, and the refractive data of both eyes were measured at baseline. A multivariate linear regression was used to analyze the relationship between the AL difference and refractive error, and paired t-test was used to analyze the changes in AL in both eyes. Results: Every 1 mm axial length change corresponds to -1.627 D (95% CI: -1.921 D, -1.333 D; P < 0.001) change in refractive error in children. The association between the AL change and the degree of myopia did not change with age (P=0.751). Among the 70 subjects, 51 (72.86%) had myopia in the right eye, and the 95% confidence interval (CI) for myopia occurring in the right eye was 62.4%-83.3%. The paired t-test showed that the average AL growth was significantly slower in myopic eyes treated with Ortho-K lenses than in nonmyopic eyes (t = 9.805, P < 0.001). Conclusion: Every 1 mm AL change would cause an average refractive error increase. Age did not influence the association between AL changes and the degree of myopia. The right eye is more likely to be affected in children with UMA. The Ortho-K lens treatment slowed down the growth of AL in the myopic eye in children with UMA.

4.
Bioresour Technol ; 373: 128732, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774986

RESUMO

To explore an effective decentralized kitchen waste (KW) treatment system, the performance and bacterial community succession of thermophilic semi-continuous composting (TSC) of KW followed by static stacking (SS) was studied. A daily feeding ratio of 10% ensured stable performance of TSC using an integrated automatic reactor; the efficiencies of organic matter degradation and seed germination index (GI) reached 80.88% and 78.51%, respectively. SS for seven days further promoted the quality of the compost by improving the GI to 91.58%. Alpha- and beta-diversity analyses revealed significant differences between the bacterial communities of TSC and SS. Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Myxococcota were dominant during the TSC of KW, whereas the members of Proteobacteria and Bacteroidetes responsible for product maturity rapidly proliferated during the subsequent SS and ultimately dominated the compost with Firmicutes and Actinobacteria. These results provide new perspectives for decentralized KW treatment using TSC for practical applications.


Assuntos
Compostagem , Solo , Fertilizantes , Bactérias , Firmicutes , Esterco/microbiologia
5.
Bioresour Technol ; 369: 128462, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36503087

RESUMO

This study evaluated the compostability of rice straw as the main feedstock (75 % in dry weight), supplemented with three different nitrogen-rich wastes, namely food waste (FW), dairy manure (DM), and sewage sludge (SS). Organic matter (OM) degradation, maturity and fertility of the end-product, and bacterial community structure during the composting processes were compared. All composting processes generated mature end-product within 51 days. Notably, FW addition was more effective to accelerate rice straw OM degradation and significantly improved end-product fertility with a high yield of Chinese cabbage. The succession of the bacterial community was accelerated with FW supplementation. Genera Geobacillus, Chryseolinea, and Blastocatella were significantly enriched during the composting of rice straw with FW supplementation. Finally, temperature, total nitrogen, moisture, pH, and total carbon were the key factors affecting microorganisms. This study provides a promising alternative method to enhance the disposal of larger amounts of rice straw in a shorter time.


Assuntos
Compostagem , Oryza , Eliminação de Resíduos , Nitrogênio/metabolismo , Oryza/metabolismo , Solo/química , Bactérias/metabolismo , Esterco/microbiologia , Suplementos Nutricionais , Esgotos
6.
Bioresour Technol ; 363: 127952, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108941

RESUMO

This study evaluated the feasibility, system stability, and microbial community succession of thermophilic semi-continuous composting of kitchen waste (KW). The results revealed that treatment performance was stable at a 10 % feeding ratio, with an organic matter (OM) degradation efficiency of 81.5 % and seed germination index (GI) of 50.0 %. Moreover, the OM degradation efficiency and GI were improved to 83.4 % and 70.0 %, respectively, by maintaining an optimal compost moisture content (50-60 %). However, feeding ratios of ≥ 20 % caused deterioration of the composter system owing to OM overloading. Microbial community analysis revealed that Firmicutes, Actinobacteria, Chloroflexi, Proteobacteria, and Gemmatimonadetes were dominant. Additionally, moisture regulation significantly increased the Proteobacteria abundance by 57.1 % and reduced the Actinobacteria abundance by 57.8 %. Moreover, network analysis indicated that the bacterial community stability and positive interactions between genera were enhanced by moisture regulation. This information provides a useful reference for practical KW composting treatment in the semi-continuous mode.


Assuntos
Actinobacteria , Compostagem , Microbiota , Bactérias , Esterco , Solo
7.
Biotechnol Biofuels Bioprod ; 15(1): 11, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35418148

RESUMO

BACKGROUND: Strong multiple stress-tolerance is a desirable characteristic for Saccharomyces cerevisiae when different feedstocks are used for economical industrial ethanol production. Random mutagenesis or genome shuffling has been applied for improving multiple stress-tolerance, however, these techniques are generally time-consuming and labor cost-intensive and their molecular mechanisms are unclear. Genetic engineering, as an efficient technology, is poorly applied to construct multiple stress-tolerant industrial S. cerevisiae due to lack of clear genetic targets. Therefore, constructing multiple stress-tolerant industrial S. cerevisiae is challenging. In this study, some target genes were mined by comparative transcriptomics analysis and applied for the construction of multiple stress-tolerant industrial S. cerevisiae strains with prominent bioethanol production. RESULTS: Twenty-eight shared differentially expressed genes (DEGs) were identified by comparative analysis of the transcriptomes of a multiple stress-tolerant strain E-158 and its original strain KF-7 under five stress conditions (high ethanol, high temperature, high glucose, high salt, etc.). Six of the shared DEGs which may have strong relationship with multiple stresses, including functional genes (ASP3, ENA5), genes of unknown function (YOL162W, YOR012W), and transcription factors (Crz1p, Tos8p), were selected by a comprehensive strategy from multiple aspects. Through genetic editing based on the CRISPR/Case9 technology, it was demonstrated that expression regulation of each of these six DEGs improved the multiple stress-tolerance and ethanol production of strain KF-7. In particular, the overexpression of ENA5 significantly enhanced the multiple stress-tolerance of not only KF-7 but also E-158. The resulting engineered strain, E-158-ENA5, achieved higher accumulation of ethanol. The ethanol concentrations were 101.67% and 27.31% higher than those of the E-158 when YPD media and industrial feedstocks (straw, molasses, cassava) were fermented, respectively, under stress conditions. CONCLUSION: Six genes that could be used as the gene targets to improve multiple stress-tolerance and ethanol production capacities of S. cerevisiae were identified for the first time. Compared to the other five DEGs, ENA5 has a more vital function in regulating the multiple stress-tolerance of S. cerevisiae. These findings provide novel insights into the efficient construction of multiple stress-tolerant industrial S. cerevisiae suitable for the fermentation of different raw materials.

8.
Appl Biochem Biotechnol ; 194(4): 1479-1495, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34748150

RESUMO

Distilled grain waste (DGW) can be converted to organic fertilizer via aerobic composting process without inoculating exogenous microorganisms. To illustrate the material conversion mechanism, this study investigated the dynamic changes of bacterial community structure and metabolic function involved in DGW composting. Results showed that a significant increase in microbial community alpha diversity was observed during DGW composting. Moreover, unique community structures occurred at each composting stage. The dominant phyla were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, Myxococcota, and Chloroflexi, whose abundance varied according to different composting stages. Keystone microbes can be selected as biomarkers for each stage, and Microbispora, Chryseolinea, Steroidobacter, Truepera, and Luteimonas indicating compost maturity. Co-occurrence network analysis revealed a significant relationship between keystone microbes and environmental factors. The carbohydrate and amino acid metabolism were confirmed as the primary metabolic pathways by metabolic function profiles. Furthermore, nitrogen metabolism pathway analysis indicated that denitrification and NH3 volatilization induced higher nitrogen loss during DGW composting. This study can provide new understanding of the microbiota for organic matter and nitrogen conversion in the composting process of DGW.


Assuntos
Compostagem , Microbiota , Bactérias/metabolismo , Bacteroidetes/metabolismo , Grão Comestível/metabolismo , Esterco , Nitrogênio/metabolismo , Solo
9.
Bioresour Technol ; 345: 126486, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871724

RESUMO

This study evaluated the dynamics of physicochemical characteristics and bacterial communities during the co-composting of distilled grain waste (DGW) and distillery sewage sludge (SS), with DGW mono-composting as a control. Results showed that co-composting with SS significantly improved DGW degradation efficiency (61.38% vs. 54.13%) and end-product quality (seed germination index: 129.82% vs. 113.61%; N + P2O5 + K2O: 9.08% vs. 5.28%), compared to DGW mono-composting. Microbial community analysis revealed that co-composting accelerated the bacterial community succession rate and enhanced the abundance of the phyla Proteobacteria, Firmicutes, Chloroflexi, and Deinococcota by 45.86%, 4.38%, 37.49%, and 15.29%, respectively. Network analysis showed that DGW-SS co-composting altered the interactions among the bacterial genera and improved bacterial community stability. Spearman correlation analysis indicated that the correlation between bacterial genera and environmental factors was more significant in DGW-SS co-composting. Therefore, co-composting of DGW and SS is a suitable strategy for the treatment of solid byproducts from spirit distilleries.


Assuntos
Compostagem , Microbiota , Grão Comestível , Esgotos , Solo
10.
Front Cell Dev Biol ; 9: 735687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568345

RESUMO

Patient similarity search is a fundamental and important task in artificial intelligence-assisted medicine service, which is beneficial to medical diagnosis, such as making accurate predictions for similar diseases and recommending personalized treatment plans. Existing patient similarity search methods retrieve medical events associated with patients from Electronic Health Record (EHR) data and map them to vectors. The similarity between patients is expressed by calculating the similarity or dissimilarity between the corresponding vectors of medical events, thereby completing the patient similarity measurement. However, the obtained vectors tend to be high dimensional and sparse, which makes it hard to calculate patient similarity accurately. In addition, most of existing methods cannot capture the time information in the EHR, which is not conducive to analyzing the influence of time factors on patient similarity search. To solve these problems, we propose a patient similarity search method based on a heterogeneous information network. On the one hand, the proposed method uses a heterogeneous information network to connect patients, diseases, and drugs, which solves the problem of vector representation of mixed information related to patients, diseases, and drugs. Meanwhile, our method measures the similarity between patients by calculating the similarity between nodes in the heterogeneous information network. In this way, the challenges caused by high-dimensional and sparse vectors can be addressed. On the other hand, the proposed method solves the problem of inaccurate patient similarity search caused by the lack of use of time information in the patient similarity measurement process by encoding time information into an annotated heterogeneous information network. Experiments show that our method is better than the compared baseline methods.

11.
Waste Manag ; 135: 130-139, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34496309

RESUMO

Aerobic composting is a promising alternative for the recycling of rice straw (RS), and an applicable nitrogen source is necessary to improve the process. The aim of this study was to compare the performance and microbial community dynamics of RS composting using urea or protein hydrolysate from leather waste (PHL) as a nitrogen source. Results showed that PHL addition achieved a faster temperature increase rate at start-up (1.85 ℃·h-1 vs 1.07 ℃·h-1), higher volatile solid degradation efficiency (48.04% vs 46.98%), and greater germination indices (111.72% vs 89.87%) in the end products, as compared to urea. The major bacterial phyla included Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in both composting processes. Although the bacterial communities in both processes succeeded in a similar pattern according to different composting phases, PHL addition accelerated the succession rate of the microbial community. Co-occurrence network analysis revealed that bacterial community composition was strongly correlated with physicochemical properties such as dissolved organic carbon (DOC), NH4+, pH, temperature, and total nitrogen (TN) content. These results proved the potential of using PHL as a nitrogen source to improve the RS composting process.


Assuntos
Compostagem , Microbiota , Oryza , Esterco , Nitrogênio/análise , Hidrolisados de Proteína , Solo , Ureia
12.
Bioresour Technol ; 337: 125492, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34320771

RESUMO

This study evaluated the impact of biochar addition on nitrogen (N) loss and the process period during distilled grain waste (DGW) composting. Results from the five treatments (0, 5, 10, 15, and 20% biochar addition) indicated that 10% biochar addition (DB10) was optimal, resulting in the lowest N loss, 25.69% vs. 40.01% in the control treatment. Moreover, the DGW composting period was shortened by approximately 14 days by biochar addition. The composition of the microbial community was not significantly altered with biochar addition in each phase, however, it did accelerate the microbial succession during DGW composting. N metabolism pathway prediction revealed that biochar addition enhanced nitrification and inhibited denitrification, and the latter phenomenon was the main reason for reducing N loss during DGW composting. Based on the above results, a potential mechanism model for biochar addition to reduce N loss during the DGW composting process was established.


Assuntos
Compostagem , Microbiota , Carvão Vegetal , Esterco , Nitrogênio , Solo
13.
Thromb Res ; 197: 36-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166900

RESUMO

Patients with essential hypertension (EH) and hyperhomocysteinemia (HHCY) suffer from more increased thrombotic events than those in EH alone. However, the underlying mechanisms for this effect are not well understood. This study hypothesized that neutrophil extracellular trap (NET) releasing may be triggered by HHCY in patients in EH, thereby predisposing them to a more hypercoagulable state. Using a modified-capture enzyme-linked immunosorbent assay (ELISA) method, we observed that cell-free DNA (CF-DNA) and myeloperoxidase DNA (MPO-DNA) in patients With EH and HHCY were significantly higher. The NET formation was also positively correlated with homocysteine levels, neutrophil-lymphocyte ratio (NLR), and hypercoagulable markers (thrombin-antithrombin complex, D-dimers). Furthermore, neutrophils from patients in EH with HHCY were found to be predisposed to amplified NET release when compared to patients in EH without HHCY or CTR. Coagulation function assays showed that NETs in patients With EH and HHCY resulted in a significantly increased ability to generate thrombin and fibrin than in those in EH without HHCY or CTR. These procoagulant effects of NETs in patients With EH and HHCY were markedly inhibited (approximately 70%) by the cleavage of NETs with DNase I. Isolated NETs from patients With EH and HHCY neutrophils also exerted a strong cytotoxic effect on endothelial cells (ECs), converted them to apoptosis. This study revealed a previously unrecognized association between the hypercoagulable state and neutrophils in patients With EH and HHCY. Therefore, blocking NETs may represent a new therapeutic objective for preventing thrombosis in these patients.


Assuntos
Armadilhas Extracelulares , Hiper-Homocisteinemia , Coagulação Sanguínea , Células Endoteliais , Hipertensão Essencial , Humanos , Hiper-Homocisteinemia/complicações , Neutrófilos
14.
Bioresour Technol ; 306: 123091, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32169511

RESUMO

The aim of this work was to study the dynamic change in structure and potential function of bacterial community during dairy manure composting process using high-throughput sequencing and advanced bioinformatics tools. Alpha diversity of microbial community significantly decreased during the thermophilic phase and then recovered gradually. Beta diversity analysis showed unique community structures in different composting phases. Keystone microbes such as genus Corynebacterium, Bacillus, Luteimonas and Nonomuraea were identified for different composting phases. Six functional modules were identified for bacterial community during the composting process using co-occurrence analysis. These modules were significantly associated with temperature, pH, degradation of organic matter and maturation of compost. Predicted metagenomics analysis showed that the relative abundance of amino acid, lipid, energy and xenobiotics metabolism increased during the composting process. These results provide valuable insights into the microbiota during dairy manure composting and how the structures and metabolic functions changed in response to composting phases.

15.
Bioresour Technol ; 301: 122760, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31972401

RESUMO

Nitrogen cycling during composting process is not yet fully understood. This study explored the key genes involved in nitrogen cycling during dairy manure composting process using high-throughput sequencing and quantitative PCR technologies. Results showed that nitrogen fixation occurred mainly during the thermophilic and cooling phases, and significantly enhanced the nitrogen content of compost. Thermoclostridium stercorarium was the main diazotroph. Ammonia oxidation occurred during the maturation phase and Nitrosomonas sp. was the most abundant ammonia oxidizing bacteria. Denitrification contributed to the greatest nitrogen loss during the composting process. The nirK community was dominated by Luteimonas sp. and Achromobacter sp., while the nirS community was dominated by Alcaligenes faecalis and Pseudomonas stutzeri. The nosZ community varied in a succession of Halomonas ilicicola, Pseudomonas flexibili and Labrenzia alba dominated communities according to different composting phases. Based on these results, nitrogen cycling models for different phases of the dairy manure composting process were established.


Assuntos
Compostagem , Sequenciamento de Nucleotídeos em Larga Escala , Esterco , Nitrogênio , Nitrosomonas , Solo
16.
Waste Manag ; 102: 569-578, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31770691

RESUMO

Compost-based biofiltration is a method widely used to mitigate ammonia emissions during composting. To improve the efficiency of a composting-biofiltration system, it is necessary to determine the most effective degree of composting at which to process the packing media used in the biofiltration system. In this study, materials pre-composted for 20 and 30 d (C20 and C30, respectively), and mature compost (CM) that had been treated for 60 d, were applied as biofilter media to remove ammonia from dairy manure composting exhaust gases. A comparison of the results revealed that the C30 biofilter not only completely removed ammonia, but also produced the least nitrogen loss (1.84%). The C20 biofilter exhibited an inferior performance, indicating that enough pre-composted time is necessary for material used as the packing media. Though the CM biofilter displayed good performance with regard to ammonia removal (97.8%), it had a high nitrogen loss (6.46%). A spearman rank correlation matrix revealed that the abundance of nitrogen cycle genes including amoA, nosZ, nirK, and nirS, had a strong correlation with the physicochemical properties such as nitrate content, carbon source, moisture content, and pH of the biofilter media. C30 provided advantageous conditions and contained a relatively high abundance of nitrifiers and the lowest abundance of denitrifiers. As a result, C30 rather than CM was a more appropriate biofilter media for ammonia removal. Moreover, the occurrence of biological nitrification during the dairy manure composting process indicates the effectiveness of a material for use as biofilter media.


Assuntos
Compostagem , Amônia , Filtração , Esterco , Nitrogênio , Solo
17.
Free Radic Biol Med ; 145: 187-197, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574344

RESUMO

Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway is associated with ischemic heart diseases (IHD). 7,8-dihydroxyflavone (7,8-DHF), BDNF mimetic, is a potent agonist of TrkB. We aimed to investigate the effects and the underlying mechanisms of 7,8-DHF on cardiac ischemia. Myocardial ischemic mouse model was induced by ligation of left anterior descending coronary artery. 7,8-DHF (5 mg/kg) was administered intraperitoneally two days after ischemia for four weeks. Echocardiography, HE staining and transmission electron microscope were used to examine the function, histology and ultrastructure of the heart. H9c2 cells were treated with hydrogen peroxide (H2O2), 7,8-DHF or TrkB inhibitor ANA-12. The effects of 7,8-DHF on cell viability, mitochondrial membrane potential (MMP) and mitochondrial superoxide generation were examined. Furthermore, mitochondrial fission and protein expression of mitochondrial dynamics (Mfn2 [mitofusin 2], OPA1 [optic atrophy 1], Drp1 [dynamin-related protein 1] and Fis-1 [fission 1]) was detected by mitotracker green staining and western blot, respectively. 7,8-DHF attenuated cardiac dysfunction and cardiomyocyte abnormality of myocardial ischemic mice. Moreover, 7,8-DHF increased cell viability and reduced cell death accompanied by improving MMP, inhibiting mitochondrial superoxide and preventing excessive mitochondrial fission of H2O2-treated H9c2 cells. The cytoprotective effects of 7,8-DHF were antagonized by ANA-12. Mechanistically, 7,8-DHF repressed OMA1-dependent conversion of L-OPA1 into S-OPA1, which was abolished by Akt inhibitor. In conclusion, 7,8-DHF protects against cardiac ischemic injury by inhibiting the proteolytic cleavage of OPA1. These findings provide a novel pharmacological effect of 7,8-DHF on mitochondrial dynamics and a new potential target for IHD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , GTP Fosfo-Hidrolases/genética , Glicoproteínas de Membrana/genética , Isquemia Miocárdica/tratamento farmacológico , Atrofia Óptica Autossômica Dominante/tratamento farmacológico , Proteínas Tirosina Quinases/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonas/farmacologia , GTP Fosfo-Hidrolases/química , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Fármacos Neuroprotetores/farmacologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia
18.
Bioresour Technol ; 247: 443-452, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28965075

RESUMO

The present study compared the development of various physicochemical properties and the composition of microbial communities involved in the composting process in the solid fraction of dairy manure (SFDM) with a sawdust-regulated SFDM (RDM). The changes in several primary physicochemical properties were similar in the two composting processes, and both resulted in mature end-products within 48days. The bacterial communities in both composting processes primarily comprised Proteobacteria and Bacteroidetes. Firmicutes were predominant in the thermophilic phase, whereas Chloroflexi, Planctomycetes, and Nitrospirae were more abundant in the final mature phase. Furthermore, the succession of bacteria in both groups proceeded in a similar pattern, suggesting that the effects of the bulking material on bacterial dynamics were minor. These results demonstrate the feasibility of composting using only the SFDM, reflected by the evolution of physicochemical properties and the microbial communities involved in the composting process.


Assuntos
Compostagem , Esterco , Bactérias , Solo , Madeira
19.
Bioresour Technol ; 245(Pt A): 778-785, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28926909

RESUMO

Aerobic composting of distilled grain waste (DGW) at different initial pH values adjusted by CaO addition was investigated. Three pH-adjusted treatments with initial pH values of 4 (R1), 5 (R2) and 6 (R3) and a control treatment (R0) with a pH value of 3.5 were conducted simultaneously. The results showed that R0 had an unsuccessful start-up of composting. However, the pH-adjusted treatments produced remarkable results, with a relatively high initial pH being beneficial for the start-up. Within 65days of composting, the degradation of volatile solids (VS) and the physicochemical properties of R2 and R3 displayed similar tendencies, and both produced a mature end-product, while R1 exhibited a lower VS degradation rate, and some of its physicochemical properties indicated the end-product was immature. Quantitative PCR analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of DGW could be attributed to the activity of ammonia-oxidizing bacteria.


Assuntos
Compostagem , Grão Comestível , Amônia , Nitrificação , Solo
20.
Int J Clin Exp Pathol ; 10(9): 10047-10055, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31966895

RESUMO

Bone marrow-derived mesenchymal stem cells (BMSCs) have shown great promise for ischemic tissue repair. However, poor viability of transplanted BMSCs within ischemic tissues has limited their therapeutic potential. Numerous evidences suggested that reactive oxygen species (ROS) generated and apoptosis play an important role in regulation BMSCs loss at the ischemic site. Uncoupling protein 2 (UCP2), a member of the anion carrier superfamily of mitochondrial inner membrane and high expression in stem cells, has been reported to influence mitochondrial ROS production and regulate the energy metabolism. However the exact roles of UCP2 in regulation the BMSCs apoptosis are still not clear. In our study, we determined the functions of UCP2 in BMSCs from SD rats. Genipin, a special UCP2 inhibitor, was added into the cultural medium to reduce the UCP2 expression in BMSCs. Apoptosis was induced by the specific apoptotic insult hypoxia and serum deprivation (SD). There was no significant differences in ATP level in BMSCs from Genipin treatment group as compared with other treatment groups. But, the levels of Reactive oxygen species (ROS) and malondialdehyde (MDA) content in BMSCs treated with Genipin were significant higher than other groups (P<0.05). Furthermore, the level of BMSCs apoptosis was much higher in H/SD and 50 µM Genipin treatment group (31.93% ± 0.16) than H/SD treatment (17.59 ± 0.69) or control group (5.79 ± 0.04) (P<0.05). In addition, Bax and caspase3 activation were elevated after treatment with Genipin (P<0.05). However, the level of anti-apoptotic protein Bcl2 was significantly declined after treatment with Genipin (P<0.05). Taken together, our findings indicate that inhibitionof UCP2 by Genipin enhanced the BMSCs apoptosis under H/SD conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...