Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 11401, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388070

RESUMO

Submesoscale interleaving layers are caused by lateral intrusions of dissimilar water masses in frontal zones, which are significant processes in shaping physical, biogeochemical, and ecological parameters in the ocean. Possible interleaving layers were sometimes observed by ship-based conductivity-temperature-depth (CTD) surveys with coarse spacing between adjacent stations in the Kuroshio region east of Taiwan but have never been examined dynamically. Here we show the characteristics of interleaving layers observed by a Seaglider with two repeated hydrographic surveys along a triangle track east of Taiwan from December 2016 to March 2017. Salinity profiles indicate that prominent interleaving layers appeared in the intermediate layer (approximately 500-800 m) with vertical and horizontal length scales of O(50) m and O(10-100) km, respectively, during our observations. A dipole eddy pair and a relatively large anticyclonic eddy impinged on the Kuroshio during the first and second surveys, respectively, which brought certain impacts on the interleaving motion as the eddy potentially altered the density slope across the Kuroshio. The associated instability analysis and the Turner angle suggest that the double diffusive instability is the primary driving mechanism for the development of interleaving layers.

2.
ACS Appl Mater Interfaces ; 8(23): 14776-87, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27220255

RESUMO

This study reports on a high ionic-conductivity gel polymer electrolyte (GPE), which is supported by a TiO2 nanoparticle-decorated polymer framework comprising poly(acrylonitrile-co-vinyl acetate) blended with poly(methyl methacrylate), i.e. , PAVM: TiO2. High conductivity GPE-PAVM: TiO2 is achieved by causing the PAVM:TiO2 polymer framework to swell in 1 M LiPF6 in carbonate solvent. Raman analysis results demonstrate that the poly(acrylonitrile) (PAN) segments and TiO2 nanoparticles strongly adsorb PF6(-) anions, thereby generating 3D percolative space-charge pathways surrounding the polymer framework for Li(+)-ion transport. The ionic conductivity of GPE-PAVM: TiO2 is nearly 1 order of magnitude higher than that of commercial separator-supported liquid electrolyte (SLE). GPE-PAVM: TiO2 has a high Li(+) transference number (0.7), indicating that most of the PF6(-) anions are stationary, which suppresses PF6(-) decomposition and substantially enlarges the voltage that can be applied to GPE-PAVM: TiO2 (to 6.5 V vs Li/Li(+)). Immobilization of PF6(-) anions also leads to the formation of stable solid-electrolyte interface (SEI) layers in a full-cell graphite|electrolyte|LiFePO4 battery, which exhibits low SEI and overall resistances. The graphite|electrolyte|LiFePO4 battery delivers high capacity of 84 mAh g(-1) even at 20 C and presents 90% and 71% capacity retention after 100 and 1000 charge-discharge cycles, respectively. This study demonstrates a GPE architecture comprising 3D space charge pathways for Li(+) ions and suppresses anion decomposition to improve the stability and lifespan of the resulting LIBs.

3.
ACS Appl Mater Interfaces ; 6(21): 19360-70, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25361495

RESUMO

The use of polyacrylonitrile (PAN) as a host for gel polymer electrolytes (GPEs) commonly produces a strong dipole-dipole interaction with the polymer. This study presents a strategy for the application of PAN in GPEs for the production of high performance lithium ion batteries. The resulting gel electrolyte GPE-AVM comprises a poly(acrylonitrile-co-vinyl acetate) copolymer blending poly(methyl methacrylate) as a host, which is swelled using a liquid electrolyte (LE) of 1 M LiPF6 in carbonate solvent. Vinyl acetate and methacrylate groups segregate the PAN chains in the GPE, which produces high ionic conductivity (3.5 × 10 (-3) S cm(-1) at 30 °C) and a wide electrochemical voltage range (>6.5 V) as well as an excellent Li(+) transference number of 0.6. This study includes GPE-AVM in a full-cell battery comprising a LiFePO4 cathode and graphite anode to promote ion motion, which reduced resistance in the battery by 39% and increased the specific power by 110%, relative to the performance of batteries based on LE. The proposed GPE-based battery has a capacity of 140 mAh g(-1) at a discharge rate of 0.1 C and is able to deliver 67 mAh g(-1) of electricity at 17 C. The proposed GPE-AVM provides a robust interface with the electrodes in full-cell batteries, resulting in 93% capacity retention after 100 charge-discharge cycles at 17 C and 63% retention after 1000 cycles.

4.
ACS Appl Mater Interfaces ; 5(17): 8477-85, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23931907

RESUMO

Using gel polymer electrolytes (GPEs) for lithium-ion batteries usually encounters the drawback of poor mechanical integrity of the GPEs. This study demonstrates the outstanding performance of a GPE consisting of a commercial membrane (Celgard) incorporated with a poly(ethylene oxide)-co-poly(propylene oxide) copolymer (P(EO-co-PO)) swelled by a liquid electrolyte (LE) of 1 M LiPF6 in carbonate solvents. The proposed GPE stably holds LE with an amount that is three times that of the Celgard-P(EO-co-PO) composite. This GPE has a higher ionic conductivity (2.8×10(-3) and 5.1×10(-4) S cm(-1) at 30 and -20 °C, respectively) and a wider electrochemical voltage range (5.1 V) than the LE-swelled Celgard because of the strong ion-solvation power of P(EO-co-PO). The active ion-solvation role of P(EO-co-PO) also suppresses the formation of the solid-electrolyte interphase layer. When assembling the GPE in a Li/LiFePO4 battery, the P(EO-co-PO) network hinders anionic transport, producing a high Li+ transference number of 0.5 and decreased the polarization overpotential. The Li/GPE/LiFePO4 battery delivers a discharge capacity of 156-135 mAh g(-1) between 0.1 and 1 C-rates, which is approximately 5% higher than that of the Li/LE/LiFePO4 battery. The IR drop of the Li/GPE/LiFePO4 battery was 44% smaller than that of the Li/LE/LiFePO4. The Li/GPE/LiFePO4 battery is more stable, with only a 1.2% capacity decay for 150 galvanostatic charge-discharge cycles. The advantages of the proposed GPE are its high stability, conductivity, Li+ transference number, and mechanical integrity, which allow for the assembly of GPE-based batteries readily scalable to industrial levels.


Assuntos
Fontes de Energia Elétrica , Géis/química , Lítio/química , Polietilenos/química , Polipropilenos/química , Condutividade Elétrica , Íons/química , Ferro/química , Fosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...