Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 259: 116405, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776801

RESUMO

Alzheimer's disease (AD) is affecting more and more people worldwide without the effective treatment, while the existed pathological mechanism has been confirmed barely useful in the treatment. Amyloid-ß peptide (Aß), a main component of senile plaque, is regarded as the most promising target in AD treatment. Aß clearance from AD brain seems to be a reliably therapeutic strategy, as the two exited drugs, GV-971 and aducanumab, are both developed based on it. However, doubt still exists. To exhaustive expound on the pathological mechanism of Aß, rigorous analyses on the concentrations and aggregation forms are essential. Thus, it is attracting broad attention these years. However, most of the sensors have not been used in pathological studies, as the lack of the bridge between analytical chemist and pathologists. In this review, we made a brief introduce on Aß-related pathological mechanism included in ß-amyloid hypothesis to elucidate the detection conditions of sensor methods. Furthermore, a summary of the sensor methods was made, which were based on Aß concentrations and form detections that have been developed in the past 10 years. As the greatest number of the sensors were built on fluorescent spectroscopy, electrochemistry, and Roman spectroscopy, detailed elucidation on them was made. Notably, the aggregation process is another important factor in revealing the progress of AD and developing the treatment methods, so the sensors on monitoring Aß aggregation processes were also summarized.

2.
Talanta ; 273: 125894, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461644

RESUMO

Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that can be used as a marker for the occurrence of oxidative stress in the organism. Lysosomes serve as intracellular digestive sites, and when the concentration of H2O2 in them is abnormal, lysosomal function is often impaired, leading to the development of diseases. Hydrogen sulfide (H2S) acts as a gaseous signaling molecule that scavenges H2O2 from cells and tissues, thereby maintaining the redox environment of the body. However, most of the reported hydrogen peroxide fluorescent probes so far can only detect H2O2, but cannot maintain the intracellular redox environment. In this paper, an H2O2 fluorescent probe LN-HOD with lysosomal targeting properties was designed and synthesized by combining the H2O2 recognition site with a naphthylamine fluorophore via a thiocarbamate moiety. The probe has the advantages of large Stokes shift (110 nm), high sensitivity and good H2S release capability. The probe LN-HOD can be used to detect H2O2 in cells, zebrafish and plant roots. In addition, LN-HOD detects changes in the concentration of H2O2 in plant roots when Arabidopsis is stressed by cadmium ion (Cd2+). And through its ability to release H2S, it can help to remove excess H2O2 and maintain the redox environment in cells, zebrafish and plant roots. The present work provides new ideas for the detection and assisted removal of H2O2, which contributes to the in-depth study of the cellular microenvironment in organisms.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Animais , Humanos , Corantes Fluorescentes/metabolismo , Peróxido de Hidrogênio/metabolismo , Peixe-Zebra , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Lisossomos/metabolismo , Células HeLa
3.
Int J Biol Macromol ; 261(Pt 1): 129720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296139

RESUMO

Gelatin-based hydrogels have gained considerable attention due to their resemblance to the extracellular matrix and hydrophilic three-dimensional network structure. Apart from providing an air-permeable and moist environment, these hydrogels optimize the inflammatory microenvironment of the wounds. These properties make gelatin-based hydrogels highly competitive in the field of wound dressings. In this study, a series of composite hydrogels were prepared using gelatin (Gel) and carboxymethyl chitosan (CMCh) as primary materials, glutaraldehyde as a crosslinker, and aloe vera juice as an anti-inflammatory component. The properties of the hydrogel, including its rheological properties, microscopic structures, mechanical properties, swelling ratios, thermal stability, antibacterial properties, and biocompatibility, were investigated. The results demonstrate that the gelatin-based hydrogels exhibit good elasticity and rapid self-healing ability. The hydrogels exhibited slight shear behavior, which is advantageous for skin care applications. Furthermore, the inclusion of aloe vera juice into the hydrogel resulted in a dense structure, improved mechanical properties and enhanced swelling ratio. The Gel/CMCh/Aloe hydrogels tolerate a compressive strength similar to that of human skin. Moreover, the hydrogels displayed excellent cytocompatibility with HFF-1 cells, and exhibited antibacterial activity against E. coli and S. aureus. Lomefloxacin was used as a model drug to study the releasing behavior of the Gel/CMCh/aloe hydrogels. The results showed that the drug was released rapidly at the initial stage, and could continue to be released for 12 h, the maximum releasing rate exceeded 20 %. These findings suggest that the gelatin-based hydrogels hold great promise as effective wound dressings.


Assuntos
Aloe , Quitosana , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Quitosana/farmacologia , Quitosana/química , Aloe/química , Gelatina/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química
4.
Int J Biol Macromol ; 256(Pt 1): 128421, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013085

RESUMO

A pH-responsive amphiphilic chitosan derivative, N-lauric-O-carboxymethyl chitosan (LA-CMCh), is synthesized. Its molecular structures are characterized by FTIR, 1H NMR, and XRD methods. The influencing factors are investigated, including the amount of lauric acid (LA), carboxymethyl chitosan (CMCh), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS), and their molar ratio, reaction time, and reaction temperature on the substitution. The degrees of substitution (DS) of the lauric groups on the -NH2 groups are calculated based on the integrated data of 1H NMR spectra. The optimum reaction condition is obtained as a reaction time of 6 h, a reaction temperature of 80 °C, and a molar ratio of lauric acid to O-carboxymethyl chitosan to N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride to N-hydroxysuccinimide of 1:3:4.5:4.5, respectively. The crystallinity and initial decomposition temperature of LA-CMCh decrease, but the maximum decomposition temperature increases. The crystallinity is reduced due to the introduction of LA and the degree of hydrogen bonding among LA-CMCh molecules. LA-CMCh could self-aggregate into particles, which size and critical aggregation concentration depend on the degree of substitution and medium pH. LA-CMCh aggregates could load curcumin up to 21.70 %, and continuously release curcumin for >200 min. LA-CMCh shows nontoxicity to fibroblast HFF-1 cells and good antibacterial activity against S. aureus and E. coli, indicating that it could be used as an oil-soluble-drug carrier.


Assuntos
Carbodi-Imidas , Quitosana , Curcumina , Metilaminas , Succinimidas , Quitosana/química , Curcumina/farmacologia , Escherichia coli , Staphylococcus aureus , Concentração de Íons de Hidrogênio
5.
Int J Biol Macromol ; 256(Pt 1): 128424, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008139

RESUMO

A large number of fresh fruits are wasted in the supply chain due to spoilage, so it is crucial to develop fruit preservation materials. Herein, two novel Ag-MOFs/carboxymethyl filter paper (Ag-MOFs/CMFP) composites were successfully synthesized by in situ facile synthesis, which can be used as packaging materials to delay fruit spoilage. The synthesis process is simple and environmentally friendly, and the reaction conditions are mild. The mechanical property, water stability, and antibacterial activity of the as-synthesized Ag-MOFs/CMFP composites were investigated. Specifically, the composites exhibited high mechanical performance and the tensile strength was >10.00 MPa. Moreover, the composites displayed good water stability and can remain stable in water environment for >7 days, which can be attributed to the strong interaction between Ag-MOFs and CMFP. Significantly, Ag-MOF particles endow the composite papers with excellent antibacterial activity, which can inactivate 99.9 % of the bacteria. Attributed to these characteristics, these composite papers were used as fruit fresh-keeping materials and can prolong the shelf-life of cherry tomatoes and peaches for >10 days. This research not only provides a facile synthesis strategy for the flexible MOFs paper, but also provides instructive guidance for related research on fruit preservation materials.


Assuntos
Celulose , Frutas , Prata/farmacologia , Antibacterianos/farmacologia , Água
6.
Int J Biol Macromol ; 254(Pt 1): 127659, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898243

RESUMO

Traditional paper-based packaging commonly needs to be coated to achieve sufficient mechanical and barrier performances. In this research, a bio-based coating for paper was developed from carbamate starch (Sc), calcium lignosulfonate (CL), and cellulose nanofibrils (CNF). Controlling the electrostatic and hydrogen-bonding interactions among the components of the coating was conducive to tailoring the structure and performance of the coated paper. When the degree of substitution (Ds) of Sc was 0.10, the amount of CL was 1.00 g, and the amount of CNF was 0.65 % of the weight of Sc, the paper coated with the resulting 0.10Sc-1.00CL-0.65CNF coating exhibited increased hydrophobicity and excellent mechanical, air-barrier, and UV-light-barrier properties. After the addition of 0.10 % of silver nano-particles (AgNPs) to the 0.10Sc-1.00CL-0.65CNF coating, the paper coated with the resulting 0.10Sc-1.00CL-0.65CNF-0.10AgNPs coating exhibited good antibacterial activity against Escherichia coli and Staphylococcus aureus. The coated paper was used as the packaging for cherry tomatoes stored under ambient conditions. Due to the synergistic preservation effects of the Sc-CL-CNF coating and AgNPs, the shelf life of the cherry tomatoes was at least 7 days. The coated paper described herein has the potential for applications in the food packaging sector.


Assuntos
Celulose , Nanopartículas Metálicas , Celulose/farmacologia , Celulose/química , Prata/farmacologia , Prata/química , Amido , Nanopartículas Metálicas/química , Embalagem de Alimentos/métodos , Carbamatos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
7.
Nanotechnology ; 35(9)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38016442

RESUMO

Lithium-sulfur (Li-S) batteries have gained considerable attention for high theoretical specific capacity and energy density. However, their development is hampered by the poor electrical conductivity of sulfur and the shuttle of polysulfides. Herein, the acidified bamboo-structure carbon nanotubes (BCNTs) were mixed with polyvinylidene difluoride and pyrolyzed at high-temperature to obtain the fluorinated bamboo-structure carbon nanotubes (FBCNTs), which were compounded with sulfur as the cathode. The prepared S@FBCNTs with sulfur loading reaching 74.2 wt.% shows a high initial specific capacity of 1407.5 mAh·g-1at the discharge rate of 0.1 C. When the discharge rate was increased to 5 C, the capacity could be maintained at 622.3 mAh·g-1. The electrical conductivity of carbon nanotubes is effectively improved by semi-ionic C-F bonds formed by the doped F atoms and carbon atoms. Simultaneously, the surface of the F-containing carbon tubes exhibits strong polarity and strong chemisorption effect on polysulfides, which inhibits the shuttle effect of Li-S batteries.

8.
Int J Biol Macromol ; 246: 125668, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37419263

RESUMO

Polypropylene is currently one of the most widely used separators in lithium batteries because of its low cost and chemical stability. However, it also has some intrinsic flaws that hamper the battery performance, such as poor wettability, low ionic conductivity, and some safety issues. This work introduces a novel electrospun nanofibrous consisting of polyimide (PI) blended with lignin (L) to serve as a new class of bio-based separators for lithium-ion batteries. The morphology and properties of the prepared membranes were studied in detail and compared with those of a commercial polypropylene separator. Interestingly, the polar groups in lignin promoted the affinity to the electrolytes and improved the liquid absorption properties of the PI-L membrane. Besides, the PI-L separator showed a higher ionic conductivity (1.78 × 10-3 S/cm) and Li+ transference number (0.787). Furthermore, the battery's cycle and rate performance improved due to adding of lignin. The capacity retention of the assembled LiFePO4 | PI-L | Li Battery was 95.1 % after 100 cycles at 1C current density, which was higher than that of the PP (90 %). Based on the results, PI-L, a bio-based battery separator, can potentially replace the current PP separators in lithium metal batteries.

9.
Int J Biol Macromol ; 243: 125195, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270119

RESUMO

Electromagnetic (EM) pollution has become a serious problem in modern society as it affects human lives. The fabrication of strong and highly flexible materials for electromagnetic interference (EMI) shielding applications is extremely urgent. Herein, a MXene Ti3C2Tx/Fe3O4 & bacterial cellulose (BC)/Fe3O4&Methyltrimethoxysilane (MTMS) flexible hydrophobic electromagnetic shielding film (SBTFX-Y, X and Y were the number of layers of BC/Fe3O4 and the layers of Ti3C2Tx/Fe3O4), was fabricated. In the prepared film, MXene Ti3C2Tx absorbs a large amount of radio waves through polarization relaxation and conduction loss. Because of its extremely low reflectance of electromagnetic waves, BC@Fe3O4, as the outermost layer of the material, allows more electromagnetic waves to incident inside the material. The maximum electromagnetic interference (EMI) shielding efficiency (SE) of 68 dB was achieved for the composite film at 45 µm thickness. What's more, the SBTFX-Y films show excellent mechanical properties, hydrophobicity and flexibility. The unique stratified structure of the film provides a new strategy for designing high-performance EMI shielding films with excellent surface and mechanical properties.


Assuntos
Bactérias , Fenômenos Eletromagnéticos , Humanos , Celulose , Poluição Ambiental
10.
Anal Methods ; 15(26): 3156-3160, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37345553

RESUMO

A cellulose based polymer probe (HC-HS) was prepared for the detection of H2S. HC-HS can be applied to fluorescence imaging of H2S in living cells and zebrafish, and HC-HS was made into test strips to detect H2S produced in the process of food corruption.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Animais , Corantes Fluorescentes/toxicidade , Peixe-Zebra , Celulose , Polímeros , Sulfeto de Hidrogênio/toxicidade
11.
J Inorg Biochem ; 245: 112252, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37207465

RESUMO

Copper-related reactive oxygen species (ROS) formation can lead to neuropathologic degradation associated with Alzheimer's disease (AD) according to amyloid cascade hypothesis. A complexing agent that can selectively chelate with copper ions and capture copper ions from the complex formed by copper ions and amyloid-ß (Cu - Aß complex) may be available in reducing ROS formation. Herein, we described applications of guluronic acid (GA), a natural oligosaccharide complexing agent obtained from enzymatic hydrolysis of brown algae, in reducing copper-related ROS formation. UV-vis absorption spectra demonstrated the coordination between GA and Cu(II). Ascorbic acid consumption and coumarin-3-carboxylic acid fluorescence assays confirmed the viability of GA in reducing ROS formation in solutions containing other metal ions and Aß. Fluorescence kinetics, DPPH radical clearance and high resolution X - ray photoelectron spectroscopy results revealed the reductivity of GA. Human liver hepatocellular carcinoma (HepG2) cell viability demonstrated the biocompatibility of GA at concentrations lower than 320 µM. Cytotoxic results of human neuroblastoma (SH-SY5Y) cells verified that GA can inhibit copper-related ROS damage in neuronal cells. Our findings, combined with the advantages of marine drugs, make GA a promising candidate in reducing copper-related ROS formation associated with AD therapy.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Peptídeos beta-Amiloides/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Cobre/química , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/química
12.
Polymers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050270

RESUMO

Zero liquid discharge (ZLD) is a technique for treating high-salinity brine to obtain freshwater and/or salt using a solar interface evaporator. However, salt accumulation on the surface of the evaporator is a big challenge to maintaining stable water evaporation. In this study, a simple and easy-to-manufacture evaporator, also called a crystallizer, was designed and fabricated by 3D printing. The photothermal layer printed with polylactic acid/carbon composites had acceptable light absorption (93%) within the wavelength zone of 250 nm-2500 nm. The micron-sized voids formed during 3D printing provided abundant water transportation channels inside the crystallizer. After surface hydrophilic modification, the crystallizer had an ultra-hydrophilic channel structure and gravity-assisted salt recovery function. The results revealed that the angles between the photothermal layers affected the efficacy of solar evaporation and the yield of solid salt. The crystallizer with the angle of 90° between two photothermal layers could collect more solid salt than the three other designs with angles of 30°, 60°, and 120°, respectively. The crystallizer has high evaporation and salt crystallization efficiency in a high-salinity brine environment, which is expected to have application potentials in the zero liquid discharge of wastewater and valuable salt recovery.

13.
Int J Biol Macromol ; 240: 124368, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028617

RESUMO

Utilization of kraft lignin to produce bio-based adsorptive material for effective dye adsorption from industrial wastewater is essential to fulfilling the significant environmental protection needs. Lignin is the most abundant byproduct material with a chemical structure containing various functional groups. However, the complicated chemical structure makes it somewhat hydrophobic and incompatible, which limits its direct application as an adsorption material. Chemical modification is a common way to enhance lignin properties. In this work, the kraft lignin was modified through direct amination using Mannich reaction and oxidization followed by amination as new route of lignin modification. The prepared lignins, including aminated lignin (AL), oxidized lignin (OL), and aminated-oxidized lignin (AOL), as well as unmodified kraft lignin, were analyzed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), elemental analysis and 1H-nuclear magnetic resonance measurements (1HNMR). The adsorption behaviors of modified lignins for the malachite green in aqueous solution were investigated well and discussed, as well as the adsorption kinetics and thermodynamic equations. Compared with other aminated lignin (AL), the AOL displayed a high adsorption capacity of 99.1 % dye removal, due to its more effective functional groups. The change in structure and functional groups on the lignin molecules during oxidation and amination had no effect on its adsorption mechanisms. The adsorption process of malachite green on different kinds of lignin belongs to endothermic chemical adsorption, which mainly consists of monolayer adsorption. The modification of lignin through oxidation followed by amination process, afforded kraft lignin a broad potential application in the field of wastewater treatment.


Assuntos
Lignina , Poluentes Químicos da Água , Adsorção , Lignina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Poluentes Químicos da Água/química
14.
Int J Biol Macromol ; 222(Pt B): 3250-3260, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244537

RESUMO

Developing biodegradable, and non-toxic materials to replace petrochemical polymers is important. Herein, the waste fish scale-derived gelatin was chosen to prepare an environmental-friendly film. While the natural product of fish scale gelatin (FSG) films has the weakness of low humidity stability, poor antibacterial activity, poor mechanical strength, and weak UV absorption. Hence, a novel multifunctional and mechanically robust FSG-based composite is proposed using chitosan (CTS) as the crosslinking matrix, liquefied chitin product (LCP), and silica sol as the functional fillers. The thermal decomposition kinetics and pyrolysis analysis show that the functional filling components were compatible with the FSG/CTS-based macromolecule matrix. The incorporation of LCP significantly improved the film's flexibility, antibacterial capacity, and UV absorption. The addition of the silica sol also increased the mechanical strength and water tolerance with decreased water vapor permeability (WVP). The increasing apparent activation energy (Ea) along with pyrolysis reactions could correlate well with the composite film's progressive crosslinks. This study demonstrated a renewable FSG/CTS/LCP/Si composite film with a much-improved property that could have potential applications in film-based packaging.


Assuntos
Quitosana , Gelatina , Animais , Gelatina/química , Quitosana/química , Vapor , Quitina , Embalagem de Alimentos , Dióxido de Silício , Resistência à Tração , Antibacterianos/farmacologia , Permeabilidade
15.
Nanoscale ; 14(39): 14433-14454, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190463

RESUMO

Rechargeable aqueous Zn-MnO2 energy storage systems have attracted extensive attention owing to their high theoretical capacity and non-flammable mild aqueous electrolytes. Nevertheless, the complicated reaction mechanism of a MnO2-based cathode severely restricts its further development. Therefore, it is crucial to clarify the kinetics of H+/Zn2+ interfacial transport in the MnO2 cathode for realizing controllable regulation of interfacial ion transport and then realizing high capacity and long lifespan. Recently, based on different reaction mechanisms, various strategies have been employed to improve the performance of aqueous Zn/MnO2 cells, such as surface modifications and structural engineering. Herein, we systematically summarize the recent advances in the modulation of interfacial H+/Zn2+ transport and related redox kinetics to effectively improve the electrochemical responses. Furthermore, the challenges of designing novel MnO2 cathodes have also been prospected in detail to provide possible guidelines for the development of Zn/MnO2 batteries.

16.
Membranes (Basel) ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36295692

RESUMO

Natural rubber latex (NRL) is commonly employed to manufacture medical protective appliances. However, the characteristics of weakness and fragility of NRL membranes limit their further application. To achieve excellent strength and damage-resistance of the rubber membrane, this work reported a facile core-shell structure construction strategy via self-assembly with modified sodium lignosulfonate (MSLS) and NRL to create a tough membrane. The double network can be formed after introducing polyamide epichlorohydrin resin (PAE) into the NRL membrane. Specifically, the first robust MSLS-PAE network can break in advance to dissipate applied energy, thereby achieving high fracture energy and tensile strength of ~111.51 kJ m-2 and ~37 MPa, respectively, which overtakes numerous soft materials. This work facilitates more studies on latex/lignin-based products with high performance and good stability for the functional application of biopolymer.

17.
J Agric Food Chem ; 70(29): 8871-8891, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848582

RESUMO

As the second most abundant natural polymer after cellulose, lignin has received considerable attention recently due to its reproducibility, safety, and biodegradability. Studies are now focusing on the development of new lignin applications to replace petroleum-based chemicals. Unfortunately, lignin has several inherent problems, such as poor water solubility and a tendency to agglomerate. However, after chemical modification, lignin can gain new functions through the introduction of new functional groups. For example, amphiphilic lignin is a polymer that is soluble in both water and organic solvents. Amphiphilic lignin polymers can be divided into anionic, cationic, and anionic-cationic amphoteric lignin-based polymers, according to the ions contained in their molecular structure. Amphiphilic lignin polymers also have a wide range of applications in various industrial fields and can be used as wetting agents, detergents, controlled release fertilizers, adsorbents, and emulsifiers. Thus, this article reviews research progress on the synthesis and applications of amphiphilic lignin-derived polymers over the past 10 years, providing a theoretical reference for the utilization of high-added-value and high-performance lignin.


Assuntos
Lignina , Polímeros , Cátions , Lignina/química , Polímeros/química , Reprodutibilidade dos Testes , Água
18.
Int J Biol Macromol ; 215: 132-140, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35714873

RESUMO

Hydrophobic coatings are widely used in a variety of materials surfaces. However, it remains a great challenge for the non-toxic and environmentally-friendly production of hydrophobic coatings. Herein, two nano-scale spherical lignin/SiO2 composite particles are synthesized based on the electrostatic interaction and the steric hindrance effect inspired by the self-protection of straw. Introduction of positively charged quaternary ammonium enhances the possibility of electrostatic self-assembly between lignin and SiO2 for QAL/SiO2, and access of super-long hydrophobic chains induces the formation of nano-sized particles for QALC12/SiO2. The coatings were fabricated by simply spraying on substrates and hydrophilic/hydrophobic properties were detected. The results show that the long hydrophobic chain can enhance the hydrophobic properties of lignin polymers (CA = 129°) and the spherical micro-nano structure is beneficial to improve the hydrophobic properties of the lignin/SiO2 composite (CA = 137°). Meanwhile, the hydrophobic coating has good self-cleaning performance. The excellent hydrophobic and self-cleaning properties are mainly benefited from the nano effect, reasonable hydrophilic/hydrophobic structure, and good dispersibility of spherical structure. This work not only provides a kind of lignin-based nano-scale waterproof coatings holding excellent properties in terms of cost, scalability, and robustness, but also has important significance for the high-value utilization of biomass resources.


Assuntos
Lignina , Dióxido de Silício , Biomassa , Interações Hidrofóbicas e Hidrofílicas , Lignina/química , Polímeros/química , Dióxido de Silício/química
19.
Polymers (Basel) ; 14(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458328

RESUMO

Temperature/pH-responsive carboxymethyl cellulose/poly (N-isopropyl acrylamide) interpenetrating polymer network (IPN) aerogels (CMC/Ca2+/PNIPAM aerogels) were developed as a novel drug delivery system. The aerogel has a highly open network structure with a porosity of more than 90%, which provides convenient conditions for drug release. The morphology and structure of the CMC/Ca2+/PNIPAM aerogels were characterized via scanning electron microscopy (SEM), Micro-CT, X-ray photoelectron spectroscopy (XPS), pore size analysis, and cytotoxicity analysis. The analysis results demonstrate that the aerogel is non-toxic and has more active sites, temperatures, and pH response performances. The anticancer drug 5-fluorouracil (5-FU) was successfully loaded into aerogels through physical entrapment and hydrogen bonding. The drug loading and sustained-release model of aerogels are used to fit the drug loading and sustained-release curve, revealing the drug loading and sustained-release mechanism, and providing a theoretical basis for the efficient drug loading and sustained release.

20.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209240

RESUMO

Superhydrophobic coatings have drawn much attention in recent years for their widespread potential applications. However, there are challenges to find a simple and cost-effective approach to prepare superhydrophobic materials and coatings using natural polymer. Herein, we prepared a kraft lignin-based superhydrophobic powder via modifying kraft lignin through 1H, 1H, 2H, 2H-perfluorodecyl-triethoxysilane (PFDTES) substitution reaction, and constructed superhydrophobic coatings by direct spraying the suspended PFDTES-Lignin powder on different substrates, including glass, wood, metal and paper. The prepared lignin-based coatings have excellent repellency to water, with a water contact angle of 164.7°, as well as good friction resistance, acid resistance, alkali resistance, salt resistance properties and quite good self-cleaning performance. After 30 cycles of sand friction or being stayed in 2 mol/L HCl, 0.25 mol/L NaOH and 2 mol/L NaCl solution for 30 min, the coatings still retain super hydrophobic capability, with contact angles higher than 150°. The superhydrophobic performance of PFDTES-Lignin coatings is mainly attributed to the constructed high surface roughness and the low surface energy afforded by modified lignin. This lignin-based polymer coating is low-cost, scalable, and has huge potential application in different fields, providing a simple way for the value-added utilization of kraft lignin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...