Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 186(20): 4454-4471.e19, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703875

RESUMO

Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.


Assuntos
Macrófagos , Humanos , Diferenciação Celular , Linhagem da Célula , Macrófagos/citologia , Microglia , Especificidade de Órgãos
2.
Nat Med ; 29(5): 1191-1200, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106166

RESUMO

Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.


Assuntos
Anemia , Eritropoetina , Animais , Humanos , Camundongos , Anemia/genética , Eritropoese/genética , Eritropoetina/genética , Rim/metabolismo , RNA/metabolismo
3.
Cell ; 185(8): 1373-1388.e20, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35381199

RESUMO

Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.


Assuntos
Escleroderma Sistêmico , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Pele/metabolismo
4.
Circulation ; 145(22): 1663-1683, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35400201

RESUMO

BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Animais , Cardiomiopatia Dilatada/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fatores de Transcrição/genética
5.
Immunity ; 54(6): 1320-1337.e4, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33945787

RESUMO

Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1s) are heterogenous innate lymphocytes broadly defined in mice as Lin-NK1.1+NKp46+ cells that express the transcription factor T-BET and produce interferon-γ. The ILC1 definition primarily stems from studies on liver and small intestinal populations. However, NK1.1+NKp46+ cells in the salivary glands, uterus, adipose, and other tissues exhibit nonuniform programs that differ from those of liver or intestinal ILC1s or NK cells. Here, we performed single-cell RNA sequencing on murine NK1.1+NKp46+ cells from blood, spleen, various tissues, and solid tumors. We identified gene expression programs of tissue-specific ILC1s, tissue-specific NK cells, and non-tissue-specific populations in blood, spleen, and other tissues largely corresponding to circulating cells. Moreover, we found that circulating NK cell programs were reshaped in tumor-bearing mice. Core programs of circulating and tumor NK cells paralleled conserved human NK cells signatures, advancing our understanding of the human NK-ILC1 spectrum.


Assuntos
Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Neoplasias/imunologia , Análise de Célula Única/métodos , Fatores de Transcrição/imunologia
6.
Nat Med ; 27(3): 491-503, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619369

RESUMO

Multiple myeloma (MM) is a neoplastic plasma-cell disorder characterized by clonal proliferation of malignant plasma cells. Despite extensive research, disease heterogeneity within and between treatment-resistant patients is poorly characterized. In the present study, we conduct a prospective, multicenter, single-arm clinical trial (NCT04065789), combined with longitudinal single-cell RNA-sequencing (scRNA-seq) to study the molecular dynamics of MM resistance mechanisms. Newly diagnosed MM patients (41), who either failed to respond or experienced early relapse after a bortezomib-containing induction regimen, were enrolled to evaluate the safety and efficacy of a daratumumab, carfilzomib, lenalidomide and dexamethasone combination. The primary clinical endpoint was safety and tolerability. Secondary endpoints included overall response rate, progression-free survival and overall survival. Treatment was safe and well tolerated; deep and durable responses were achieved. In prespecified exploratory analyses, comparison of 41 primary refractory and early relapsed patients, with 11 healthy subjects and 15 newly diagnosed MM patients, revealed new MM molecular pathways of resistance, including hypoxia tolerance, protein folding and mitochondria respiration, which generalized to larger clinical cohorts (CoMMpass). We found peptidylprolyl isomerase A (PPIA), a central enzyme in the protein-folding response pathway, as a potential new target for resistant MM. CRISPR-Cas9 deletion of PPIA or inhibition of PPIA with a small molecule inhibitor (ciclosporin) significantly sensitizes MM tumor cells to proteasome inhibitors. Together, our study defines a roadmap for integrating scRNA-seq in clinical trials, identifies a signature of highly resistant MM patients and discovers PPIA as a potent therapeutic target for these tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Análise de Célula Única/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/administração & dosagem , Estudos de Casos e Controles , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lenalidomida/administração & dosagem , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Oligopeptídeos/administração & dosagem , Resultado do Tratamento
7.
Cell ; 182(4): 872-885.e19, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32783915

RESUMO

Cell function and activity are regulated through integration of signaling, epigenetic, transcriptional, and metabolic pathways. Here, we introduce INs-seq, an integrated technology for massively parallel recording of single-cell RNA sequencing (scRNA-seq) and intracellular protein activity. We demonstrate the broad utility of INs-seq for discovering new immune subsets by profiling different intracellular signatures of immune signaling, transcription factor combinations, and metabolic activity. Comprehensive mapping of Arginase 1-expressing cells within tumor models, a metabolic immune signature of suppressive activity, discovers novel Arg1+ Trem2+ regulatory myeloid (Mreg) cells and identifies markers, metabolic activity, and pathways associated with these cells. Genetic ablation of Trem2 in mice inhibits accumulation of intra-tumoral Mreg cells, leading to a marked decrease in dysfunctional CD8+ T cells and reduced tumor growth. This study establishes INs-seq as a broadly applicable technology for elucidating integrated transcriptional and intra-cellular maps and identifies the molecular signature of myeloid suppressive cells in tumors.


Assuntos
Glicoproteínas de Membrana/metabolismo , Neoplasias/patologia , RNA Citoplasmático Pequeno/química , Receptores Imunológicos/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Receptores Imunológicos/genética , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
8.
Nat Cell Biol ; 21(5): 568-578, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036938

RESUMO

The mechanisms underlying enhancer activation and the extent to which enhancer-promoter rewiring contributes to spatiotemporal gene expression are not well understood. Using integrative and time-resolved analyses we show that the extensive transcriptome and epigenome resetting during the conversion between 'serum' and '2i' states of mouse embryonic stem cells (ESCs) takes place with minimal enhancer-promoter rewiring that becomes more evident in primed-state pluripotency. Instead, differential gene expression is strongly linked to enhancer activation via H3K27ac. Conditional depletion of transcription factors and allele-specific enhancer analysis reveal an essential role for Esrrb in H3K27 acetylation and activation of 2i-specific enhancers. Restoration of a polymorphic ESRRB motif using CRISPR-Cas9 in a hybrid ESC line restores ESRRB binding and enhancer H3K27ac in an allele-specific manner but has no effect on chromatin interactions. Our study shows that enhancer activation in serum- and 2i-ESCs is largely driven by transcription factor binding and epigenetic marking in a hardwired network of chromatin interactions.


Assuntos
Cromatina/genética , Epigênese Genética , Células-Tronco Embrionárias Murinas/metabolismo , Receptores de Estrogênio/genética , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Elementos Facilitadores Genéticos , Histonas/genética , Camundongos , Células-Tronco Pluripotentes , Regiões Promotoras Genéticas , Transcriptoma/genética
9.
Nat Cell Biol ; 21(7): 911-912, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31097792

RESUMO

In the version of the article originally published, extra lines were displayed in Fig. 7. Fig. 7a contained a solid black line that extended into panel b, and Fig. 7c contained two extra scale bars on the left. These have been removed from the figure. The errors have been corrected in the HTML and PDF versions of the article.

10.
Nat Med ; 24(12): 1867-1876, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30523328

RESUMO

Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients.


Assuntos
Heterogeneidade Genética , Mieloma Múltiplo/sangue , Neoplasia Residual/sangue , Mieloma Múltiplo Latente/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Neoplasia Residual/genética , Neoplasia Residual/patologia , Mieloma Múltiplo Latente/genética , Mieloma Múltiplo Latente/patologia
11.
ACS Appl Mater Interfaces ; 10(11): 9435-9443, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29528216

RESUMO

Lithium-sulfur (Li-S) battery is regarded as one of the most promising next-generation efficient energy storage systems because of its ultrahigh theoretical capacity of 1675 mAh/g and energy density of 2600 Wh/kg accompanied by the environmental benignity and abundance from natural sulfur. However, the insulating nature of sulfur and the dissolution of the polysulfides Li2S n (4 ≤ n ≤ 8) seriously restrict its practical application. The metastable small sulfur molecules (S2-4) stored in microporous carbon (pore size of <0.6 nm) as the active materials can avoid the production of the soluble polysulfide and solve the shuttle effect thoroughly. In addition, the conductivity of sulfur can be also improved. However, the preparation of microporous carbon materials with reasonable pore size and unique morphology for efficiently encapsulating S2-4 is still challenging. Herein, three flowerlike microporous nitrogen-doped carbon nanosheets with the pore size of <0.6 nm (namely, FMNCN-800, -900, and -1000) as the cathode materials in Li-S batteries were obtained from temperature-dependent carbonization of the metal-organic framework (MOF), Zn-TDPAT, which was from the simply reflux reaction of N-rich ligand H6TDPAT with Zn(II) salt. Our study showed that the FMNCN-900 from carbonization of Zn-TDPAT at 900 °C has suitable pore volume and nitrogen content, accommodating small S2-4 molecules in its micropores with the mass uptake of about 45%. Meanwhile, the appropriate amount of the nitrogen doping and the unique nanostructure of the flowerlike carbon nanosheet in the FMNCN-900 can effectively support its fast electronic transmission and lithium-ion conduction. The resulting S@FMNCN-900 composite cathode material presents the excellent electrochemical property in the Li-S battery (here the carbonate as electrolytes) with a reversible capacity of about 1220 mAh/g at 0.1C after 200 cycles and even 727 mAh/g at 2C after the long-term cycle of 1000 with only around 0.02% capacity loss per cycle. Obviously, the results indicate that the delicate construction of MOF-derived nitrogen-doped microporous carbon nanosheet is a promising strategy to develop novel electrode material for high-performing Li-S batteries.

12.
Cell Host Microbe ; 23(1): 89-100.e5, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29324233

RESUMO

The tuberculosis vaccine bacillus Calmette-Guérin (BCG) has heterologous beneficial effects against non-related infections. The basis of these effects has been poorly explored in humans. In a randomized placebo-controlled human challenge study, we found that BCG vaccination induced genome-wide epigenetic reprograming of monocytes and protected against experimental infection with an attenuated yellow fever virus vaccine strain. Epigenetic reprogramming was accompanied by functional changes indicative of trained immunity. Reduction of viremia was highly correlated with the upregulation of IL-1ß, a heterologous cytokine associated with the induction of trained immunity, but not with the specific IFNγ response. The importance of IL-1ß for the induction of trained immunity was validated through genetic, epigenetic, and immunological studies. In conclusion, BCG induces epigenetic reprogramming in human monocytes in vivo, followed by functional reprogramming and protection against non-related viral infections, with a key role for IL-1ß as a mediator of trained immunity responses.


Assuntos
Vacina BCG/imunologia , Interleucina-1beta/sangue , Monócitos/imunologia , Mycobacterium bovis/imunologia , Viroses/prevenção & controle , Febre Amarela/prevenção & controle , Vírus da Febre Amarela/imunologia , Adulto , Reprogramação Celular/genética , Epigênese Genética/genética , Humanos , Interferon gama/sangue , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Masculino , Polimorfismo de Nucleotídeo Único/genética , Vacinação , Viremia/prevenção & controle , Viroses/imunologia , Febre Amarela/imunologia , Febre Amarela/virologia , Adulto Jovem
13.
Nat Struct Mol Biol ; 24(10): 870-878, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28869609

RESUMO

RNA modifications are integral to the regulation of RNA metabolism. One abundant mRNA modification is N6-methyladenosine (m6A), which affects various aspects of RNA metabolism, including splicing, translation and degradation. Current knowledge about the proteins recruited to m6A to carry out these molecular processes is still limited. Here we describe comprehensive and systematic mass-spectrometry-based screening of m6A interactors in various cell types and sequence contexts. Among the main findings, we identified G3BP1 as a protein that is repelled by m6A and positively regulates mRNA stability in an m6A-regulated manner. Furthermore, we identified FMR1 as a sequence-context-dependent m6A reader, thus revealing a connection between an mRNA modification and an autism spectrum disorder. Collectively, our data represent a rich resource and shed further light on the complex interplay among m6A, m6A interactors and mRNA homeostasis.


Assuntos
Adenosina/análogos & derivados , Homeostase , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Linhagem Celular , Humanos , Espectrometria de Massas , Ligação Proteica
14.
Nat Commun ; 8: 14418, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28195176

RESUMO

Genome-wide association studies have identified a great number of non-coding risk variants for colorectal cancer (CRC). To date, the majority of these variants have not been functionally studied. Identification of allele-specific transcription factor (TF) binding is of great importance to understand regulatory consequences of such variants. A recently developed proteome-wide analysis of disease-associated SNPs (PWAS) enables identification of TF-DNA interactions in an unbiased manner. Here we perform a large-scale PWAS study to comprehensively characterize TF-binding landscape that is associated with CRC, which identifies 731 allele-specific TF binding at 116 CRC risk loci. This screen identifies the A-allele of rs1800734 within the promoter region of MLH1 as perturbing the binding of TFAP4 and consequently increasing DCLK3 expression through a long-range interaction, which promotes cancer malignancy through enhancing expression of the genes related to epithelial-to-mesenchymal transition.


Assuntos
Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Alelos , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA , Quinases Semelhantes a Duplacortina , Epigênese Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteína 1 Homóloga a MutL/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteoma , Proteômica , Fatores de Transcrição
15.
Cell Metab ; 24(6): 807-819, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27866838

RESUMO

Induction of trained immunity (innate immune memory) is mediated by activation of immune and metabolic pathways that result in epigenetic rewiring of cellular functional programs. Through network-level integration of transcriptomics and metabolomics data, we identify glycolysis, glutaminolysis, and the cholesterol synthesis pathway as indispensable for the induction of trained immunity by ß-glucan in monocytes. Accumulation of fumarate, due to glutamine replenishment of the TCA cycle, integrates immune and metabolic circuits to induce monocyte epigenetic reprogramming by inhibiting KDM5 histone demethylases. Furthermore, fumarate itself induced an epigenetic program similar to ß-glucan-induced trained immunity. In line with this, inhibition of glutaminolysis and cholesterol synthesis in mice reduced the induction of trained immunity by ß-glucan. Identification of the metabolic pathways leading to induction of trained immunity contributes to our understanding of innate immune memory and opens new therapeutic avenues.


Assuntos
Epigênese Genética , Fumaratos/metabolismo , Glutamina/metabolismo , Imunidade Inata/genética , Colesterol/metabolismo , Glucose/metabolismo , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Tolerância Imunológica , Macrófagos/metabolismo , Modelos Biológicos , Via de Pentose Fosfato/genética , Proteólise
16.
Cell ; 167(5): 1354-1368.e14, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863248

RESUMO

Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, ß-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo ß-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. VIDEO ABSTRACT.


Assuntos
Tolerância Imunológica , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Sepse/imunologia , Transcrição Gênica , beta-Glucanas/imunologia , Diferenciação Celular , Metilação de DNA , Epigenômica , Redes Reguladoras de Genes , Código das Histonas , Humanos , Imunidade Inata , Memória Imunológica , Macrófagos/citologia , Monócitos/citologia , Sepse/genética
17.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863252

RESUMO

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Células-Tronco Hematopoéticas/metabolismo , Doenças do Sistema Imunitário/genética , Alelos , Diferenciação Celular , Predisposição Genética para Doença , Células-Tronco Hematopoéticas/patologia , Humanos , Doenças do Sistema Imunitário/patologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , População Branca/genética
19.
Genome Biol ; 16: 264, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26619937

RESUMO

BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activated transcription factors to recruitment of activated transcription factors to pre-established long-range interactions. RESULTS: Using circular chromosome conformation capture coupled with next generation sequencing and high-resolution chromatin interaction analysis by paired-end tag sequencing of P300, we observed agonist-induced changes in long-range chromatin interactions, and uncovered interconnected enhancer-enhancer hubs spanning up to one megabase. The vast majority of activated glucocorticoid receptor and nuclear factor kappa-b appeared to join pre-existing P300 enhancer hubs without affecting the chromatin conformation. In contrast, binding of the activated transcription factors to loci with their consensus response elements led to the increased formation of an active epigenetic state of enhancers and a significant increase in long-range interactions within pre-existing enhancer networks. De novo enhancers or ligand-responsive enhancer hubs preferentially interacted with ligand-induced genes. CONCLUSIONS: We demonstrate that, at a subset of genomic loci, ligand-mediated induction leads to active enhancer formation and an increase in long-range interactions, facilitating efficient regulation of target genes. Therefore, our data suggest an active role of signal-dependent transcription factors in chromatin and long-range interaction remodeling.


Assuntos
Cromatina/química , Elementos Facilitadores Genéticos , NF-kappa B/metabolismo , Receptores de Glucocorticoides/metabolismo , Sítios de Ligação , Cromatina/metabolismo , Redes Reguladoras de Genes , Ligantes , Fatores de Transcrição de p300-CBP/metabolismo
20.
Cell Stem Cell ; 17(6): 748-757, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637943

RESUMO

Serum-to-2i interconversion of mouse embryonic stem cells (mESCs) is a valuable in vitro model for early embryonic development. To assess whether 3D chromatin organization changes during this transition, we established Capture Hi-C with target-sequence enrichment of DNase I hypersensitive sites. We detected extremely long-range intra- and inter-chromosomal interactions between a small subset of H3K27me3 marked bivalent promoters involving the Hox clusters in serum-grown cells. Notably, these promoter-mediated interactions are not present in 2i ground-state pluripotent mESCs but appear upon their further development into primed-like serum mESCs. Reverting serum mESCs to ground-state 2i mESCs removes these promoter-promoter interactions in a spatiotemporal manner. H3K27me3, which is largely absent at bivalent promoters in ground-state 2i mESCs, is necessary, but not sufficient, to establish these interactions, as confirmed by Capture Hi-C on Eed(-/-) serum mESCs. Our results implicate H3K27me3 and PRC2 as critical players in chromatin alteration during priming of ESCs for differentiation.


Assuntos
Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas , Animais , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Cromatina/metabolismo , Desoxirribonuclease I/metabolismo , Células-Tronco Embrionárias/citologia , Genes Homeobox , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...