Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foot Ankle Surg ; 30(2): 135-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37919180

RESUMO

INTRODUCTION: Ankle fractures account for approximately 10 % of all fractures. Approximately 5-68 % of patients with ankle fractures may suffer from malunion. Besides, suboptimal reduction of fracture fragments can affect the biomechanics of the ankle joint, ultimately leading to damage to the ankle joint. However, there are certain controversies over the conclusion of previous cadaveric studies. METHODS: In this study, a three-dimensional model of the ankle joint was established based on CT image data. In addition, the effects of backward offset (1-2 mm) and outward offset (0.5-1 mm) of the fracture fragment on the contact area, contact pressure, and ligament force of the ankle joint were investigated via the finite element method. Moreover, lateral malleolus fracture malunion in five ankle positions (neutral, 10° dorsiflexion, 10° plantarflexion, 20° dorsiflexion, and 20° plantarflexion) was investigated. RESULTS: This model predicted an overall increased contact area in the ankle joint in patients with lateral malleolus fracture malunion compared with the normal ankle joint. The results demonstrated that the outward offset had a more significant effect than the backward one. The larger the dorsiflexion-plantarflexion angle, the more pronounced the effect of malunion. Further, an outward offset can cause the fibula to lose its function. CONCLUSION: Post-traumatic osteoarthritis occurs under the action of unaccustomed cartilage forces due to altered tibial talar joint contact patterns, rather than increased contact pressure reported in previous studies. Malunion leads to an increase or decrease in force on the affected ligament, while the cause of malunion can be envisioned based on a decrease in the force on the ligaments.


Assuntos
Fraturas do Tornozelo , Traumatismos do Tornozelo , Humanos , Fraturas do Tornozelo/cirurgia , Articulação do Tornozelo/cirurgia , Tornozelo , Fenômenos Biomecânicos , Traumatismos do Tornozelo/cirurgia
2.
Materials (Basel) ; 16(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37629874

RESUMO

17-4PH martensitic steel is usually used as valve stems in nuclear power plants and it suffers from thermal aging embrittlement due to long-time service in a high-temperature and high-pressure environment. Here, we characterized the evolution of microstructures at the nano-scale in 17-4PH steel by in situ small-angle neutron scattering (SANS) with a thermo-mechanically coupled loading device. The device could set different temperatures and tensile so that an in situ SANS experiment could dynamically characterize the process of nanoscale structural changes. The results showed that with increasing thermal aging time, the ε-Cu phase precipitates and grows as the temperature is 475 °C and 590 °C, and the ε-Cu phase is spherical at 475 °C but became elongated cylinders at 590 °C. Moreover, the loading stress could aid in the growth of the ε-Cu phase at 475 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA