Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Comput Model Eng Sci ; 136(3): 2127-2172, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-37152661

RESUMO

Problems: For people all over the world, cancer is one of the most feared diseases. Cancer is one of the major obstacles to improving life expectancy in countries around the world and one of the biggest causes of death before the age of 70 in 112 countries. Among all kinds of cancers, breast cancer is the most common cancer for women. The data showed that female breast cancer had become one of the most common cancers. Aims: A large number of clinical trials have proved that if breast cancer is diagnosed at an early stage, it could give patients more treatment options and improve the treatment effect and survival ability. Based on this situation, there are many diagnostic methods for breast cancer, such as computer-aided diagnosis (CAD). Methods: We complete a comprehensive review of the diagnosis of breast cancer based on the convolutional neural network (CNN) after reviewing a sea of recent papers. Firstly, we introduce several different imaging modalities. The structure of CNN is given in the second part. After that, we introduce some public breast cancer data sets. Then, we divide the diagnosis of breast cancer into three different tasks: 1. classification; 2. detection; 3. segmentation. Conclusion: Although this diagnosis with CNN has achieved great success, there are still some limitations. (i) There are too few good data sets. A good public breast cancer dataset needs to involve many aspects, such as professional medical knowledge, privacy issues, financial issues, dataset size, and so on. (ii) When the data set is too large, the CNN-based model needs a sea of computation and time to complete the diagnosis. (iii) It is easy to cause overfitting when using small data sets.

2.
J King Saud Univ Comput Inf Sci ; 35(2): 560-575, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37215946

RESUMO

Brain tumor is one of the common diseases of the central nervous system, with high morbidity and mortality. Due to the wide range of brain tumor types and pathological types, the same type is divided into different subgrades. The imaging manifestations are complex, making clinical diagnosis and treatment difficult. In this paper, we construct SpCaNet (Spinal Convolution Attention Network) to effectively utilize the pathological features of brain tumors, consisting of a Positional Attention (PA) convolution block, Relative self-attention transformer block, and Intermittent fully connected (IFC) layer. Our method is more lightweight and efficient in recognition of brain tumors. Compared with the SOTA model, the number of parameters is reduced by more than three times. In addition, we propose the gradient awareness minimization (GAM) algorithm to solve the problem of insufficient generalization ability of the traditional Stochastic Gradient Descent (SGD) method and use it to train the SpCaNet model. Compared with SGD, GAM achieves better classification performance. According to the experimental results, our method has achieved the highest accuracy of 99.28%, and the proposed method performs well in classifying brain tumors.

3.
Comput Biol Med ; 160: 106998, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182422

RESUMO

In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. At early stages, CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMRI) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians as each scan has many slices of data, and the contrast of it might be low. To address these issues, deep learning (DL) techniques have been employed in the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. The following presents research to detect CVDs using CMR images and the most significant DL methods. Another section discussed the challenges in diagnosing CVDs from CMRI data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. Finally, the most important findings of this study are presented in the conclusion section.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Aprendizado Profundo , Humanos , Doenças Cardiovasculares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Coração , Doença da Artéria Coronariana/diagnóstico
4.
J Ambient Intell Humaniz Comput ; 14(5): 5395-5406, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37223108

RESUMO

Cerebral microbleed (CMB) is a serious public health concern. It is associated with dementia, which can be detected with brain magnetic resonance image (MRI). CMBs often appear as tiny round dots on MRIs, and they can be spotted anywhere over brain. Therefore, manual inspection is tedious and lengthy, and the results are often short in reproducible. In this paper, a novel automatic CMB diagnosis method was proposed based on deep learning and optimization algorithms, which used the brain MRI as the input and output the diagnosis results as CMB and non-CMB. Firstly, sliding window processing was employed to generate the dataset from brain MRIs. Then, a pre-trained VGG was employed to obtain the image features from the dataset. Finally, an ELM was trained by Gaussian-map bat algorithm (GBA) for identification. Results showed that the proposed method VGG-ELM-GBA provided better generalization performance than several state-of-the-art approaches.

5.
J King Saud Univ Comput Inf Sci ; 35(1): 115-130, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37220564

RESUMO

Detection of breast mass plays a very important role in making the diagnosis of breast cancer. For faster detection of breast cancer caused by breast mass, we developed a novel and efficient patch-based breast mass detection system for mammography images. The proposed framework is comprised of three modules, including pre-processing, multiple-level breast tissue segmentation, and final breast mass detection. An improved Deeplabv3+ model for pectoral muscle removal is deployed in pre-processing. We then proposed a multiple-level thresholding segmentation method to segment breast mass and obtained the connected components (ConCs), where the corresponding image patch to each ConC is extracted for mass detection. In the final detection stage, each image patch is classified into breast mass and breast tissue background by trained deep learning models. The patches that are classified as breast mass are then taken as the candidates for breast mass. To reduce the false positive rate in the detection results, we applied the non-maximum suppression algorithm to combine the overlapped detection results. Once an image patch is considered a breast mass, the accurate detection result can then be retrieved from the corresponding ConC in the segmented images. Moreover, a coarse segmentation result can be simultaneously retrieved after detection. Compared to the state-of-the-art methods, the proposed method achieved comparable performance. On CBIS-DDSM, the proposed method achieved a detection sensitivity of 0.87 at 2.86 FPI (False Positive rate per Image), while the sensitivity reached 0.96 on INbreast with an FPI of only 1.29.

6.
Comput Biol Med ; 159: 106847, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068316

RESUMO

BACKGROUND: Convolutional Neural Networks (CNNs) and the hybrid models of CNNs and Vision Transformers (VITs) are the recent mainstream methods for COVID-19 medical image diagnosis. However, pure CNNs lack global modeling ability, and the hybrid models of CNNs and VITs have problems such as large parameters and computational complexity. These models are difficult to be used effectively for medical diagnosis in just-in-time applications. METHODS: Therefore, a lightweight medical diagnosis network CTMLP based on convolutions and multi-layer perceptrons (MLPs) is proposed for the diagnosis of COVID-19. The previous self-supervised algorithms are based on CNNs and VITs, and the effectiveness of such algorithms for MLPs is not yet known. At the same time, due to the lack of ImageNet-scale datasets in the medical image domain for model pre-training. So, a pre-training scheme TL-DeCo based on transfer learning and self-supervised learning was constructed. In addition, TL-DeCo is too tedious and resource-consuming to build a new model each time. Therefore, a guided self-supervised pre-training scheme was constructed for the new lightweight model pre-training. RESULTS: The proposed CTMLP achieves an accuracy of 97.51%, an f1-score of 97.43%, and a recall of 98.91% without pre-training, even with only 48% of the number of ResNet50 parameters. Furthermore, the proposed guided self-supervised learning scheme can improve the baseline of simple self-supervised learning by 1%-1.27%. CONCLUSION: The final results show that the proposed CTMLP can replace CNNs or Transformers for a more efficient diagnosis of COVID-19. In addition, the additional pre-training framework was developed to make it more promising in clinical practice.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Endoscopia
7.
Technol Cancer Res Treat ; 22: 15330338231165856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36977533

RESUMO

AIMS: Blood cell classification helps detect various diseases. However, the current classification model of blood cells cannot always get great results. A network that automatically classifies blood cells can provide doctors with data as one of the criteria for diagnosing patients' disease types and severity. If doctors diagnose blood cells, doctors could spend lots of time on the diagnosis. The diagnosis progress is very tedious. Doctors can make some mistakes when they feel tired. On the other hand, different doctors may have different points on the same patient. METHODS: We propose a ResNet50-based ensemble of randomized neural networks (ReRNet) for blood cell classification. ResNet50 is used as the backbone model for feature extraction. The extracted features are fed to 3 randomized neural networks (RNNs): Schmidt neural network, extreme learning machine, and dRVFL. The outputs of the ReRNet are the ensemble of these 3 RNNs based on the majority voting mechanism. The 5 × 5-fold cross-validation is applied to validate the proposed network. RESULTS: The average-accuracy, average-sensitivity, average-precision, and average-F1-score are 99.97%, 99.96%, 99.98%, and 99.97%, respectively. CONCLUSIONS: The ReRNet is compared with 4 state-of-the-art methods and achieves the best classification performance. The ReRNet is an effective method for blood cell classification based on these results.


Assuntos
Aprendizado Profundo , Humanos , Redes Neurais de Computação , Células Sanguíneas
8.
Int J Neural Syst ; 33(3): 2350010, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36655400

RESUMO

Deep learning has become a primary choice in medical image analysis due to its powerful representation capability. However, most existing deep learning models designed for medical image classification can only perform well on a specific disease. The performance drops dramatically when it comes to other diseases. Generalizability remains a challenging problem. In this paper, we propose an evolutionary attention-based network (EDCA-Net), which is an effective and robust network for medical image classification tasks. To extract task-related features from a given medical dataset, we first propose the densely connected attentional network (DCA-Net) where feature maps are automatically channel-wise weighted, and the dense connectivity pattern is introduced to improve the efficiency of information flow. To improve the model capability and generalizability, we introduce two types of evolution: intra- and inter-evolution. The intra-evolution optimizes the weights of DCA-Net, while the inter-evolution allows two instances of DCA-Net to exchange training experience during training. The evolutionary DCA-Net is referred to as EDCA-Net. The EDCA-Net is evaluated on four publicly accessible medical datasets of different diseases. Experiments showed that the EDCA-Net outperforms the state-of-the-art methods on three datasets and achieves comparable performance on the last dataset, demonstrating good generalizability for medical image classification.

9.
Comput Syst Sci Eng ; 45(1): 21-34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36636525

RESUMO

Community-acquired pneumonia (CAP) is considered a sort of pneumonia developed outside hospitals and clinics. To diagnose community-acquired pneumonia (CAP) more efficiently, we proposed a novel neural network model. We introduce the 2-dimensional wavelet entropy (2d-WE) layer and an adaptive chaotic particle swarm optimization (ACP) algorithm to train the feed-forward neural network. The ACP uses adaptive inertia weight factor (AIWF) and Rossler attractor (RA) to improve the performance of standard particle swarm optimization. The final combined model is named WE-layer ACP-based network (WACPN), which attains a sensitivity of 91.87±1.37%, a specificity of 90.70±1.19%, a precision of 91.01±1.12%, an accuracy of 91.29±1.09%, F1 score of 91.43±1.09%, an MCC of 82.59±2.19%, and an FMI of 91.44±1.09%. The AUC of this WACPN model is 0.9577. We find that the maximum deposition level chosen as four can obtain the best result. Experiments demonstrate the effectiveness of both AIWF and RA. Finally, this proposed WACPN is efficient in diagnosing CAP and superior to six state-of-the-art models. Our model will be distributed to the cloud computing environment.

10.
Soft comput ; : 1-17, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36686545

RESUMO

COVID-19 is a positive-sense single-stranded RNA virus caused by a strain of coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several noteworthy variants of SARS-CoV-2 were declared by WHO as Alpha, Beta, Gamma, Delta, and Omicron. Till 13/Dec/2022, it has caused 6.65 million death tolls, and over 649 million confirmed positive cases. Based on the convolutional neural network (CNN), this study first proposes a ten-layer CNN as the backbone model. Then, the exponential linear unit (ELU) is introduced to replace ReLU, and the traditional convolutional block is now transformed into conv-ELU. Finally, an ELU-based CNN (ELUCNN) model is proposed for COVID-19 diagnosis. Besides, the MDA strategy is used to enhance the size of the training set. We develop a mobile app integrating ELUCNN, and this web app is run on a client-server modeled structure. Ten runs of the tenfold cross-validation experiment show our model yields a sensitivity of 94.41 ± 0.98 , a specificity of 94.84 ± 1.21 , an accuracy of 94.62 ± 0.96 , and an F1 score of 94.61 ± 0.95 . The ELUCNN model and mobile app are effective in COVID-19 diagnosis and give better results than 14 state-of-the-art COVID-19 diagnosis models concerning accuracy.

11.
Biocell ; 47(2): 373-384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36570878

RESUMO

Since 2019, the coronavirus disease-19 (COVID-19) has been spreading rapidly worldwide, posing an unignorable threat to the global economy and human health. It is a disease caused by severe acute respiratory syndrome coronavirus 2, a single-stranded RNA virus of the genus Betacoronavirus. This virus is highly infectious and relies on its angiotensin-converting enzyme 2-receptor to enter cells. With the increase in the number of confirmed COVID-19 diagnoses, the difficulty of diagnosis due to the lack of global healthcare resources becomes increasingly apparent. Deep learning-based computer-aided diagnosis models with high generalisability can effectively alleviate this pressure. Hyperparameter tuning is essential in training such models and significantly impacts their final performance and training speed. However, traditional hyperparameter tuning methods are usually time-consuming and unstable. To solve this issue, we introduce Particle Swarm Optimisation to build a PSO-guided Self-Tuning Convolution Neural Network (PSTCNN), allowing the model to tune hyperparameters automatically. Therefore, the proposed approach can reduce human involvement. Also, the optimisation algorithm can select the combination of hyperparameters in a targeted manner, thus stably achieving a solution closer to the global optimum. Experimentally, the PSTCNN can obtain quite excellent results, with a sensitivity of 93.65%±1.86%, a specificity of 94.32%±2.07%, a precision of 94.30%±2.04%, an accuracy of 93.99%±1.78%, an F1-score of 93.97%±1.78%, Matthews Correlation Coefficient of 87.99%±3.56%, and Fowlkes-Mallows Index of 93.97%±1.78%. Our experiments demonstrate that compared to traditional methods, hyperparameter tuning of the model using an optimisation algorithm is faster and more effective.

12.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2639-2646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35976826

RESUMO

Tuberculosis is a very deadly disease, with more than half of all tuberculosis cases dead in countries and regions with relatively poor health care resources. Fortunately, the disease is curable, and early diagnosis and medication can go a long way toward curing TB patients. Unfortunately, traditional methods of TB diagnosis rely on specialist doctors, which is lacking in areas with high TB mortality rates. Diagnostic methods based on artificial intelligence technology are one of the solutions to this problem. We propose a Deep Transferred EfficientNet with SVM (DTE-SVM), which replaces the pre-trained EfficientNet classification layer with an SVM classifier and achieves auspicious performance on a small dataset. After ten runs of 10-fold Cross-Validation, the DTE-SVM has a sensitivity of 93.89±1.96, a specificity of 95.35±1.31, a precision of 95.30±1.24, an accuracy of 94.62±1.00, and an F1-score of 94.62±1.00. In addition, our study conducted ablation studies on the effect of the SVM classifier on model performance and briefly discussed the results.

13.
Syst Sci Control Eng ; 10(1): 325-335, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36568847

RESUMO

With a global COVID-19 pandemic, the number of confirmed patients increases rapidly, leaving the world with very few medical resources. Therefore, the fast diagnosis and monitoring of COVID-19 are one of the world's most critical challenges today. Artificial intelligence-based CT image classification models can quickly and accurately distinguish infected patients from healthy populations. Our research proposes a deep learning model (WE-SAJ) using wavelet entropy for feature extraction, two-layer FNNs for classification and the adaptive Jaya algorithm as a training algorithm. It achieves superior performance compared to the Jaya-based model. The model has a sensitivity of 85.47±1.84, specificity of 87.23±1.67 precision of 87.03±1.34, an accuracy of 86.35±0.70, and F1 score of 86.23±0.77, Matthews correlation coefficient of 72.75±1.38, and Fowlkes-Mallows Index of 86.24±0.76. Our experiments demonstrate the potential of artificial intelligence techniques for COVID-19 diagnosis and the effectiveness of the Self-adaptive Jaya algorithm compared to the Jaya algorithm for medical image classification tasks.

14.
Front Public Health ; 10: 1046296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408000

RESUMO

The COVID-19 virus's rapid global spread has caused millions of illnesses and deaths. As a result, it has disastrous consequences for people's lives, public health, and the global economy. Clinical studies have revealed a link between the severity of COVID-19 cases and the amount of virus present in infected people's lungs. Imaging techniques such as computed tomography (CT) and chest x-rays can detect COVID-19 (CXR). Manual inspection of these images is a difficult process, so computerized techniques are widely used. Deep convolutional neural networks (DCNNs) are a type of machine learning that is frequently used in computer vision applications, particularly in medical imaging, to detect and classify infected regions. These techniques can assist medical personnel in the detection of patients with COVID-19. In this article, a Bayesian optimized DCNN and explainable AI-based framework is proposed for the classification of COVID-19 from the chest X-ray images. The proposed method starts with a multi-filter contrast enhancement technique that increases the visibility of the infected part. Two pre-trained deep models, namely, EfficientNet-B0 and MobileNet-V2, are fine-tuned according to the target classes and then trained by employing Bayesian optimization (BO). Through BO, hyperparameters have been selected instead of static initialization. Features are extracted from the trained model and fused using a slicing-based serial fusion approach. The fused features are classified using machine learning classifiers for the final classification. Moreover, visualization is performed using a Grad-CAM that highlights the infected part in the image. Three publically available COVID-19 datasets are used for the experimental process to obtain improved accuracies of 98.8, 97.9, and 99.4%, respectively.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Raios X , COVID-19/diagnóstico por imagem , Teorema de Bayes , Redes Neurais de Computação
15.
IEEE Sens J ; 22(18): 17431-17438, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36346097

RESUMO

(Aim) To detect COVID-19 patients more accurately and more precisely, we proposed a novel artificial intelligence model. (Methods) We used previously proposed chest CT dataset containing four categories: COVID-19, community-acquired pneumonia, secondary pulmonary tuberculosis, and healthy subjects. First, we proposed a novel VGG-style base network (VSBN) as backbone network. Second, convolutional block attention module (CBAM) was introduced as attention module into our VSBN. Third, an improved multiple-way data augmentation method was used to resist overfitting of our AI model. In all, our model was dubbed as a 12-layer attention-based VGG-style network for COVID-19 (AVNC) (Results) This proposed AVNC achieved the sensitivity/precision/F1 per class all above 95%. Particularly, AVNC yielded a micro-averaged F1 score of 96.87%, which is higher than 11 state-of-the-art approaches. (Conclusion) This proposed AVNC is effective in recognizing COVID-19 diseases.

16.
Comput Biol Med ; 150: 106151, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244303

RESUMO

AIM: Corona Virus Disease 2019 (COVID-19) was a lung disease with high mortality and was highly contagious. Early diagnosis of COVID-19 and distinguishing it from pneumonia was beneficial for subsequent treatment. OBJECTIVES: Recently, Graph Convolutional Network (GCN) has driven a significant contribution to disease diagnosis. However, limited by the nature of the graph convolution algorithm, deep GCN has an over-smoothing problem. Most of the current GCN models are shallow neural networks, which do not exceed five layers. Furthermore, the objective of this study is to develop a novel deep GCN model based on the DenseGCN and the pre-trained model of deep Convolutional Neural Network (CNN) to complete the diagnosis of chest X-ray (CXR) images. METHODS: We apply the pre-trained model of deep CNN to perform feature extraction on the data to complete the extraction of pixel-level features in the image. And then, to extract the potential relationship between the obtained features, we propose Neighbourhood Feature Reconstruction Algorithm to reconstruct them into graph-structured data. Finally, we design a deep GCN model that exploits the graph-structured data to diagnose COVID-19 effectively. In the deep GCN model, we propose a Node-Self Convolution Algorithm (NSC) based on feature fusion to construct a deep GCN model called NSCGCN (Node-Self Convolution Graph Convolutional Network). RESULTS: Experiments were carried out on the Computed Tomography (CT) and CXR datasets. The results on the CT dataset confirmed that: compared with the six state-of-the-art (SOTA) shallow GCN models, the accuracy and sensitivity of the proposed NSCGCN had improve 8% as sensitivity (Sen.) = 87.50%, F1 score = 97.37%, precision (Pre.) = 89.10%, accuracy (Acc.) = 97.50%, area under the ROC curve (AUC) = 97.09%. Moreover, the results on the CXR dataset confirmed that: compared with the fourteen SOTA GCN models, sixteen SOTA CNN transfer learning models and eight SOTA COVID-19 diagnosis methods on the COVID-19 dataset. Our proposed method had best performances as Sen. = 96.45%, F1 score = 96.45%, Pre. = 96.61%, Acc. = 96.45%, AUC = 99.22%. CONCLUSION: Our proposed NSCGCN model is effective and performed better than the thirty-eight SOTA methods. Thus, the proposed NSC could help build deep GCN models. Our proposed COVID-19 diagnosis method based on the NSCGCN model could help radiologists detect pneumonia from CXR images and distinguish COVID-19 from Ordinary Pneumonia (OPN). The source code of this work will be publicly available at https://github.com/TangChaosheng/NSCGCN.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Teste para COVID-19 , Algoritmos , Área Sob a Curva , Aprendizagem
17.
Front Public Health ; 10: 948205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111186

RESUMO

Coronavirus disease 2019 (COVID-19) is a highly contagious disease that has claimed the lives of millions of people worldwide in the last 2 years. Because of the disease's rapid spread, it is critical to diagnose it at an early stage in order to reduce the rate of spread. The images of the lungs are used to diagnose this infection. In the last 2 years, many studies have been introduced to help with the diagnosis of COVID-19 from chest X-Ray images. Because all researchers are looking for a quick method to diagnose this virus, deep learning-based computer controlled techniques are more suitable as a second opinion for radiologists. In this article, we look at the issue of multisource fusion and redundant features. We proposed a CNN-LSTM and improved max value features optimization framework for COVID-19 classification to address these issues. The original images are acquired and the contrast is increased using a combination of filtering algorithms in the proposed architecture. The dataset is then augmented to increase its size, which is then used to train two deep learning networks called Modified EfficientNet B0 and CNN-LSTM. Both networks are built from scratch and extract information from the deep layers. Following the extraction of features, the serial based maximum value fusion technique is proposed to combine the best information of both deep models. However, a few redundant information is also noted; therefore, an improved max value based moth flame optimization algorithm is proposed. Through this algorithm, the best features are selected and finally classified through machine learning classifiers. The experimental process was conducted on three publically available datasets and achieved improved accuracy than the existing techniques. Moreover, the classifiers based comparison is also conducted and the cubic support vector machine gives better accuracy.


Assuntos
COVID-19 , Aprendizado Profundo , Mariposas , Animais , Humanos , Redes Neurais de Computação , Raios X
18.
Comput Biol Med ; 148: 105812, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35834967

RESUMO

Breast cancer is a top dangerous killer for women. An accurate early diagnosis of breast cancer is the primary step for treatment. A novel breast cancer detection model called SAFNet is proposed based on ultrasound images and deep learning. We employ a pre-trained ResNet-18 embedded with the spatial attention mechanism as the backbone model. Three randomized network models are trained for prediction in the SAFNet, which are fused by majority voting to produce more accurate results. A public ultrasound image dataset is utilized to evaluate the generalization ability of our SAFNet using 5-fold cross-validation. The simulation experiments reveal that the SAFNet can produce higher classification results compared with four existing breast cancer classification methods. Therefore, our SAFNet is an accurate tool to detect breast cancer that can be applied in clinical diagnosis.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Mama , Feminino , Humanos , Ultrassonografia
19.
Front Aging Neurosci ; 14: 948704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865746

RESUMO

As a neurodevelopmental disorder, autism spectrum disorder (ASD) severely affects the living conditions of patients and their families. Early diagnosis of ASD can enable the disease to be effectively intervened in the early stage of development. In this paper, we present an ASD classification network defined as CNNG by combining of convolutional neural network (CNN) and gate recurrent unit (GRU). First, CNNG extracts the 3D spatial features of functional magnetic resonance imaging (fMRI) data by using the convolutional layer of the 3D CNN. Second, CNNG extracts the temporal features by using the GRU and finally classifies them by using the Sigmoid function. The performance of CNNG was validated on the international public data-autism brain imaging data exchange (ABIDE) dataset. According to the experiments, CNNG can be highly effective in extracting the spatio-temporal features of fMRI and achieving a classification accuracy of 72.46%.

20.
Front Syst Neurosci ; 16: 838822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720439

RESUMO

Aims: Brain diseases refer to intracranial tissue and organ inflammation, vascular diseases, tumors, degeneration, malformations, genetic diseases, immune diseases, nutritional and metabolic diseases, poisoning, trauma, parasitic diseases, etc. Taking Alzheimer's disease (AD) as an example, the number of patients dramatically increases in developed countries. By 2025, the number of elderly patients with AD aged 65 and over will reach 7.1 million, an increase of nearly 29% over the 5.5 million patients of the same age in 2018. Unless medical breakthroughs are made, AD patients may increase from 5.5 million to 13.8 million by 2050, almost three times the original. Researchers have focused on developing complex machine learning (ML) algorithms, i.e., convolutional neural networks (CNNs), containing millions of parameters. However, CNN models need many training samples. A small number of training samples in CNN models may lead to overfitting problems. With the continuous research of CNN, other networks have been proposed, such as randomized neural networks (RNNs). Schmidt neural network (SNN), random vector functional link (RVFL), and extreme learning machine (ELM) are three types of RNNs. Methods: We propose three novel models to classify brain diseases to cope with these problems. The proposed models are DenseNet-based SNN (DSNN), DenseNet-based RVFL (DRVFL), and DenseNet-based ELM (DELM). The backbone of the three proposed models is the pre-trained "customize" DenseNet. The modified DenseNet is fine-tuned on the empirical dataset. Finally, the last five layers of the fine-tuned DenseNet are substituted by SNN, ELM, and RVFL, respectively. Results: Overall, the DSNN gets the best performance among the three proposed models in classification performance. We evaluate the proposed DSNN by five-fold cross-validation. The accuracy, sensitivity, specificity, precision, and F1-score of the proposed DSNN on the test set are 98.46% ± 2.05%, 100.00% ± 0.00%, 85.00% ± 20.00%, 98.36% ± 2.17%, and 99.16% ± 1.11%, respectively. The proposed DSNN is compared with restricted DenseNet, spiking neural network, and other state-of-the-art methods. Finally, our model obtains the best results among all models. Conclusions: DSNN is an effective model for classifying brain diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...