Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(3): 201, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461287

RESUMO

Sarcopenia, a progressive and prevalent neuromuscular disorder, is characterized by age-related muscle wasting and weakening. Despite its widespread occurrence, the molecular underpinnings of this disease remain poorly understood. Herein, we report that levels of Agrin, an extracellular matrix (ECM) protein critical for neuromuscular formation, were decreased with age in the skeletal muscles of mice. The conditional loss of Agrin in myogenic progenitors and satellite cells (SCs) (Pax7 Cre:: Agrin flox/flox) causes premature muscle aging, manifesting a distinct sarcopenic phenotype in mice. Conversely, the elevation of a miniaturized form of Agrin in skeletal muscle through adenovirus-mediated gene transfer induces enhanced muscle capacity in aged mice. Mechanistic investigations suggest that Agrin-mediated improvement in muscle function occurs through the stimulation of Yap signaling and the concurrent upregulation of dystroglycan expression. Collectively, our findings underscore the pivotal role of Agrin in the aging process of skeletal muscles and propose Agrin as a potential therapeutic target for addressing sarcopenia.


Assuntos
Agrina , Sarcopenia , Animais , Camundongos , Agrina/genética , Agrina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sarcopenia/genética , Transdução de Sinais
2.
Biomolecules ; 13(12)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136627

RESUMO

Nrg1 (Neuregulin 1) type III, a susceptible gene of schizophrenia, exhibits a critical role in the central nervous system and is essential at each stage of Schwann's cell development. Nrg1 type III comprises double-pass transmembrane domains, with the N-terminal and C-terminal localizing inside the cells. The N-terminal transmembrane helix partially overlaps with the cysteine-rich domain (CRD). In this study, Nrg1 type III constructs with different tags were transformed into cultured cells to verify whether CRD destroyed the transmembrane helix formation. We took advantage of immunofluorescent and immunoprecipitation assays on whole cells and analyzed the N-terminal distribution. Astonishingly, we found that a novel form of Nrg1 type III, about 10% of Nrg1 type III, omitted the N-terminal transmembrane helix, with the N-terminal positioning outside the membrane. The results indicated that the novel single-pass transmembrane status was a minor form of Nrg1 type III caused by N-terminal processing, while the major form was a double-pass transmembrane status.


Assuntos
Neuregulina-1 , Esquizofrenia , Humanos , Neuregulina-1/genética , Esquizofrenia/genética
3.
Front Chem ; 11: 1179956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408563

RESUMO

Introduction: Sanjin tablets (SJT) are a well-known Chinese patent drug that have been used to treat urinary tract infections (UTIs) for the last 40 years. The drug consists of five herbs, but only 32 compounds have been identified, which hinders the clarification of its effective substances and mechanism. Methods: The chemical constituents of SJT and their effective substances and functional mechanism involved in the treatment of UTIs were investigated by using high performance liquid chromatography-electrospray ionization-ion trap-time of flight-mass spectrometry (HPLC-ESI-IT-TOF-MSn), network pharmacology, and molecular docking. Results: A total of 196 compounds of SJT (SJT-MS) were identified, and 44 of them were unequivocally identified by comparison with the reference compounds. Among 196 compounds, 13 were potential new compounds and 183 were known compounds. Among the 183 known compounds, 169 were newly discovered constituents of SJT, and 93 compounds were not reported in the five constituent herbs. Through the network pharmacology method, 119 targets related to UTIs of 183 known compounds were predicted, and 20 core targets were screened out. Based on the "compound-target" relationship analysis, 94 compounds were found to act on the 20 core targets and were therefore regarded as potential effective compounds. According to the literature, 27 of the 183 known compounds were found to possess antimicrobial and anti-inflammatory activities and were verified as effective substances, of which 20 were first discovered in SJT. Twelve of the 27 effective substances overlapped with the 94 potential effective compounds and were determined as key effective substances of SJT. The molecular docking results showed that the 12 key effective substances and 10 selected targets of the core targets have good affinity for each other. Discussion: These results provide a solid foundation for understanding the effective substances and mechanism of SJT.

4.
Biomol Biomed ; 23(5): 772-784, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36815443

RESUMO

Rapsyn, an intracellular scaffolding protein associated with the postsynaptic membranes in the neuromuscular junction (NMJ), is critical for nicotinic acetylcholine receptor clustering and maintenance. Therefore, Rapsyn is essential to the NMJ formation and maintenance, and Rapsyn mutant is one of the reasons causing the pathogenies of congenital myasthenic syndrome (CMS). In addition, there is little research on Rapsyn in the central nervous system (CNS). In this review, the role of Rapsyn in the NMJ formation and the mutation of Rapsyn leading to CMS will be reviewed separately and sequentially. Finally, the potential function of Rapsyn is prospected.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Receptores Colinérgicos/genética , Junção Neuromuscular/metabolismo , Proteínas Musculares/genética
5.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364095

RESUMO

Nardosinone, a sesquiterpene peroxide, is one of the main active constituents of the ethnomedicine Nardostachyos Radix et Rhizoma, and it has many bioactivities, such as antiarrhythmia and cardioprotection. To elucidate its in vivo existence forms, its metabolism is first studied using mice. All urine and feces are collected during the six days of oral dosing of nardosinone, and blood is collected at one hour after the last dose. Besides, to validate some metabolites, a fast experiment is performed, in which nardosinone was orally administered and the subsequent one-hour urine is collected and immediately analyzed by UHPLC-Q-TOF-MS. In total, 76 new metabolites are identified in this study, including 39, 51, and 12 metabolites in urine, plasma, and feces, respectively. Nardosinone can be converted into nardosinone acid or its isomers. The metabolic reactions of nardosinone included hydroxylation, hydrogenation, dehydration, glucuronidation, sulfation, demethylation, and carboxylation. There are 56 and 20 metabolites with the structural skeleton of nardosinone and nardosinone acid, respectively. In total, 77 in vivo existence forms of nardosinone are found in mice. Nardosinone is mainly excreted in urine and is not detected in the feces. These findings will lay the foundation for further research of the in vivo effective forms of nardosinone and Nardostachyos Radix et Rhizoma.


Assuntos
Medicamentos de Ervas Chinesas , Ratos , Camundongos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos Sprague-Dawley , Sesquiterpenos Policíclicos , Medicamentos de Ervas Chinesas/química , Fezes/química , Administração Oral
6.
Curr Issues Mol Biol ; 44(5): 2194-2216, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35678678

RESUMO

Oligodendrocyte (OL) myelination is a critical process for the neuronal axon function in the central nervous system. After demyelination occurs because of pathophysiology, remyelination makes repairs similar to myelination. Proliferation and differentiation are the two main stages in OL myelination, and most factors commonly play converse roles in these two stages, except for a few factors and signaling pathways, such as OLIG2 (Oligodendrocyte transcription factor 2). Moreover, some OL maturation gene mutations induce hypomyelination or hypermyelination without an obvious function in proliferation and differentiation. Herein, three types of factors regulating myelination are reviewed in sequence.

7.
Cell Biosci ; 12(1): 54, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526070

RESUMO

BACKGROUND: Low-density lipoprotein receptor-related protein 4 (LRP4) plays a critical role in the central nervous system (CNS), including hippocampal synaptic plasticity, maintenance of excitatory synaptic transmission, fear regulation, as well as long-term potentiation (LTP). RESULTS: In this study, we found that Lrp4 was highly expressed in layer II of the piriform cortex. Both body weight and brain weight decreased in Lrp4ECD/ECD mice without TMD (Transmembrane domain) and ICD (intracellular domain) of LRP4. However, in the piriform cortical neurons of Lrp4ECD/ECD mice, the spine density increased, and the frequency of both mEPSC (miniature excitatory postsynaptic current) and sEPSC (spontaneous excitatory postsynaptic current) was enhanced. Intriguingly, finding food in the buried food-seeking test was prolonged in both Lrp4ECD/ECD mice and Lrp4 cKO (conditional knockout of Lrp4 in the piriform cortex) mice. CONCLUSIONS: This study indicated that the full length of LRP4 in the piriform cortex was necessary for maintaining synaptic plasticity and the integrity of olfactory function.

8.
Mol Brain ; 15(1): 33, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410424

RESUMO

BACKGROUND: Abnormal white matter is a common neurobiological change in bipolar disorder, and dysregulation of myelination in oligodendrocytes (OLs) is the cause. Transmembrane protein 108 (Tmem108), as a susceptible gene of bipolar disorder, is expressed higher in OL lineage cells than any other lineage cells in the central nervous system. Moreover, Tmem108 mutant mice exhibit mania-like behaviors, belonging to one of the signs of bipolar disorder. However, it is unknown whether Tmem108 regulates the myelination of the OLs. RESULTS: Tmem108 expression in the corpus callosum decreased with the development, and OL progenitor cell proliferation and OL myelination were enhanced in the mutant mice. Moreover, the mutant mice exhibited mania-like behavior after acute restraint stress and were susceptible to drug-induced epilepsy. CONCLUSIONS: Tmem108 inhibited OL progenitor cell proliferation and mitigated OL maturation in the corpus callosum, which may also provide a new role of Tmem108 involving bipolar disorder pathogenesis.


Assuntos
Corpo Caloso , Substância Branca , Animais , Linhagem da Célula , Proliferação de Células , Mania , Camundongos , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
9.
J Neurosci ; 42(4): 532-551, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34848499

RESUMO

Mutations in some cell adhesion molecules (CAMs) cause abnormal synapse formation and maturation, and serve as one of the potential mechanisms of autism spectrum disorders (ASDs). Recently, DSCAM (Down syndrome cell adhesion molecule) was found to be a high-risk gene for autism. However, it is still unclear how DSCAM contributes to ASD. Here, we show that DSCAM expression was downregulated following synapse maturation, and that DSCAM deficiency caused accelerated dendritic spine maturation during early postnatal development. Mechanistically, the extracellular domain of DSCAM interacts with neuroligin1 (NLGN1) to block the NLGN1-neurexin1ß (NRXN1ß) interaction. DSCAM extracellular domain was able to rescue spine overmaturation in DSCAM knockdown neurons. Precocious spines in DSCAM-deficient mice showed increased glutamatergic transmission in the developing cortex and induced autism-like behaviors, such as social novelty deficits and repetitive behaviors. Thus, DSCAM might be a repressor that prevents premature spine maturation and excessive glutamatergic transmission, and its deficiency could lead to autism-like behaviors. Our study provides new insight into the potential pathophysiological mechanisms of ASDs.SIGNIFICANCE STATEMENTDSCAM is not only associated with Down syndrome but is also a strong autism risk gene based on large-scale sequencing analysis. However, it remains unknown exactly how DSCAM contributes to autism. In mice, either neuron- and astrocyte-specific or pyramidal neuron-specific DSCAM deficiencies resulted in autism-like behaviors and enhanced spatial memory. In addition, DSCAM knockout or knockdown in pyramidal neurons led to increased dendritic spine maturation. Mechanistically, the extracellular domain of DSCAM binds to NLGN1 and inhibits NLGN1-NRXN1ß interaction, which can rescue abnormal spine maturation induced by DSCAM deficiency. Our research demonstrates that DSCAM negatively modulates spine maturation, and that DSCAM deficiency leads to excessive spine maturation and autism-like behaviors, thus providing new insight into a potential pathophysiological mechanism of autism.


Assuntos
Transtorno do Espectro Autista/metabolismo , Moléculas de Adesão Celular/deficiência , Espinhas Dendríticas/metabolismo , Neurogênese/fisiologia , Córtex Somatossensorial/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Células COS , Moléculas de Adesão Celular/genética , Células Cultivadas , Chlorocebus aethiops , Espinhas Dendríticas/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/patologia
10.
Front Endocrinol (Lausanne) ; 12: 770145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690937

RESUMO

Background: Schizophrenia (SCZ) is a severe psychiatric disease affected by genetic factors and environmental contributors, and premorbid abnormality of glucose metabolism is one of the SCZ characteristics supposed to contribute to the disease's pathological process. Transmembrane protein 108 (Tmem108) is a susceptible gene associated with multiple psychiatric diseases, including SCZ. Moreover, Tmem108 mutant mice exhibit SCZ-like behaviors in the measurement of sensorimotor gating. However, it is unknown whether Tmem108 regulates glucose metabolism homeostasis while it involves SCZ pathophysiological process. Results: In this research, we found that Tmem108 mutant mice exhibited glucose intolerance, insulin resistance, and disturbed metabolic homeostasis. Food and oxygen consumption decreased, and urine production increased, accompanied by weak fatigue resistance in the mutant mice. Simultaneously, the glucose metabolic pathway was enhanced, and lipid metabolism decreased in the mutant mice, consistent with the elevated respiratory exchange ratio (RER). Furthermore, metformin attenuated plasma glucose levels and improved sensorimotor gating in Tmem108 mutant mice. Conclusions: Hyperglycemia occurs more often in SCZ patients than in control, implying that these two diseases share common biological mechanisms, here we demonstrate that the Tmem108 mutant may represent such a comorbid mechanism.


Assuntos
Metabolismo dos Carboidratos/genética , Glucose/metabolismo , Homeostase/genética , Resistência à Insulina/genética , Esquizofrenia/genética , Proteínas de Transporte Vesicular/genética , Animais , Ingestão de Alimentos/genética , Intolerância à Glucose/genética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Consumo de Oxigênio/genética
11.
Cell Biosci ; 11(1): 105, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090516

RESUMO

BACKGROUND: The neuromuscular junction (NMJ) is a peripheral synapse critical to muscle contraction. Like acetylcholine receptors (AChRs), many essential proteins of NMJ are extremely concentrated at the postjunctional membrane. However, the mechanisms of synapse-specific concentration are not well understood; furthermore, it is unclear whether signaling molecules critical to NMJ formation and maintenance are also locally transcribed. RESULTS: We studied the ß-gal activity encoded by a lacZ cassette driven by the promoter of the Lrp4 gene. As reported for Lrp4 mRNA, ß-gal was in the central region in embryonic muscles and at the NMJ after its formation. However, ß-gal was no longer in the central areas of muscle fibers in Lrp4 or MuSK mutant mice, indicating a requirement of Lrp4/MuSK signaling. This phenotype could be rescued by transgenic expression of LRP4 with a transmembrane domain but not soluble ECD in Lrp4 mutant mice. ß-gal and AChR clusters were distributed in a broader region in lacZ/ECD than that of heterozygous lacZ/+ mice, indicating an important role of the transmembrane domain in Lrp4 signaling. Synaptic ß-gal activity became diffused after denervation or treatment with µ-conotoxin, despite its mRNA was increased, indicating synaptic Lrp4 mRNA enrichment requires muscle activity. ß-gal was also diffused in aged mice but became re-concentrated after muscle stimulation. Finally, Lrp4 mRNA was increased in C2C12 myotubes by Wnt ligands in a manner that could be inhibited by RKI-1447, an inhibitor of ROCK in Wnt non-canonical signaling. Injecting RKI-1447 into muscles of adult mice diminished Lrp4 synaptic expression. CONCLUSIONS: This study demonstrates that synapse-specific enrichment of Lrp4 mRNA requires a coordinated interaction between Lrp4/MuSK signaling, muscle activity, and Wnt non-canonical signaling. Thus, the study provides a new mechanism for Lrp4 mRNA enrichment. It also provides a potential target for the treatment of NMJ aging and other NMJ-related diseases.

12.
Biology (Basel) ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063992

RESUMO

Low-density lipoprotein receptor-related protein 4 (Lrp4) is a critical protein involved in the Agrin-Lrp4-MuSK signaling pathway that drives the clustering of acetylcholine receptors (AChRs) at the neuromuscular junction (NMJ). Many studies have shown that Lrp4 also functions in kidney development, bone formation, nervous system development, etc. However, whether Lrp4 participates in nerve regeneration in mammals remains unknown. Herein, we show that Lrp4 is expressed in SCs and that conditional knockout (cKO) of Lrp4 in SCs promotes peripheral nerve regeneration. In Lrp4 cKO mice, the demyelination of SCs was accelerated, and the proliferation of SCs was increased in the injured nerve. Furthermore, we identified that two myelination-related genes, Krox-20 and Mpz, were downregulated more dramatically in the cKO group than in the control group. Our results elucidate a novel role of Lrp4 in peripheral nerve regeneration and thereby provide a potential therapeutic target for peripheral nerve recovery.

13.
Front Physiol ; 12: 642908, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012406

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease characterized by progressive muscle weakness and wasting. Stimulation of AMP-activated protein kinase (AMPK) has been demonstrated to increase muscle function and protect muscle against damage in dystrophic mice. Metformin is a widely used anti-hyperglycemic drug and has been shown to be an indirect activator of AMPK. Based on these findings, we sought to determine the effects of metformin on neuromuscular deficits in mdx murine model of DMD. In this study, we found metformin treatment increased muscle strength accompanied by elevated twitch and tetanic force of tibialis anterior (TA) muscle in mdx mice. Immunofluorescence and electron microscopy analysis of metformin-treated mdx muscles revealed an improvement in muscle fiber membrane integrity. Electrophysiological studies showed the amplitude of miniature endplate potentials (mEPP) was increased in treated mice, indicating metformin also improved neuromuscular transmission of the mdx mice. Analysis of mRNA and protein levels from muscles of treated mice showed an upregulation of AMPK phosphorylation and dystrophin-glycoprotein complex protein expression. In conclusion, metformin can indeed improve muscle function and diminish neuromuscular deficits in mdx mice, suggesting its potential use as a therapeutic drug in DMD patients.

14.
Hum Mol Genet ; 30(17): 1579-1590, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-33987657

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease characterized by progressive wasting of skeletal muscles. The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, critical for the control of muscle contraction. The NMJ decline is observed in DMD patients, but the mechanism is unclear. LRP4 serves as a receptor for agrin, a proteoglycan secreted by motor neurons to induce NMJ, and plays a critical role in NMJ formation and maintenance. Interestingly, we found that protein levels of LRP4 were reduced both in muscles of the DMD patients and DMD model mdx mice. We explored whether increasing LRP4 is beneficial for DMD and crossed muscle-specific LRP4 transgenic mice with mdx mice (mdx; HSA-LRP4). The LRP4 transgene increased muscle strength, together with improved neuromuscular transmission in mdx mice. Furthermore, we found the LRP4 expression mitigated NMJ fragments and denervation in mdx mice. Mechanically, we showed that overexpression of LRP4 increased the activity of MuSK and expression of dystrophin-associated glycoprotein complex proteins in the mdx mice. Overall, our findings suggest that increasing LRP4 improves both function and structure of NMJ in the mdx mice and Agrin signaling might serve as a new therapeutic strategy in DMD.


Assuntos
Proteínas Relacionadas a Receptor de LDL/metabolismo , Distrofia Muscular de Duchenne/genética , Animais , Autoanticorpos/genética , Autoanticorpos/metabolismo , China , Modelos Animais de Doenças , Distrofina/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Junção Neuromuscular/metabolismo , Regeneração , Transmissão Sináptica
15.
Cell Death Dis ; 12(4): 403, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854034

RESUMO

The genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1-LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.


Assuntos
Quinases Lim/metabolismo , Neuregulina-1/metabolismo , Neurônios/metabolismo , Coluna Vertebral/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Camundongos , Neuregulina-1/genética , Plasticidade Neuronal/fisiologia , Receptor ErbB-4/metabolismo , Coluna Vertebral/patologia , Sinapses/metabolismo
16.
Mol Brain ; 13(1): 166, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302985

RESUMO

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential for inducing the neuromuscular junction (NMJ) formation in muscle fibers, and LRP4 plays a critical role in dendritic development and synaptogenesis in the central nervous system (CNS). As a single transmembrane protein, LRP4 contains an enormously sizeable extracellular domain (ECD), containing multiple LDLα repeats in the N-terminal of ECD. LRP4 only with extracellular domain acts as a similar mechanism of full-length LRP4 in muscles to stimulate acetylcholine receptor clustering. In this study, we elucidated that LDLα repeats of LRP4 maintained the body weight and survival rate. Dendritic branches of the pyramidal neurons in Lrp4-null mice with LRP4 LDLα repeats residue were more than in Lrp4-null mice without residual LRP4 domain. Supplement with conditioned medium from LRP4 LDLα overexpression cells, the primary culture pyramidal neurons achieved strong dendritic arborization ability. Besides, astrocytes with LRP4 LDLα repeats residue could promote pyramidal neuronal dendrite arborization in the primary co-cultured system. These observations signify that LRP4 LDLα repeats play a prominent underlying role in dendrite arborization.


Assuntos
Astrócitos/metabolismo , Dendritos/metabolismo , Proteínas Relacionadas a Receptor de LDL/química , Proteínas Relacionadas a Receptor de LDL/metabolismo , Sequências Repetitivas de Aminoácidos , Animais , Peso Corporal , Células Cultivadas , Córtex Cerebral/patologia , Células HEK293 , Humanos , Camundongos Knockout , Domínios Proteicos , Células Piramidais/metabolismo , Análise de Sobrevida
17.
Cell Biosci ; 10(1): 135, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33292473

RESUMO

BACKGROUND: Epilepsy is characterized by the typical symptom of seizure, and anti-seizure medications are the main therapeutic method in clinical, but the effects of these therapy have not been satisfactory. To find a better treatment, it makes sense to further explore the regulatory mechanisms of seizures at genetic level. Lrp4 regionally expresses in mice hippocampus where is key to limbic epileptogenesis. It is well known that neurons release a high level of glutamate during seizures, and it has been reported that Lrp4 in astrocytes down-regulates glutamate released from neurons. However, it is still unclear whether there is a relationship between Lrp4 expression level and seizures, and whether Lrp4 plays a role in seizures. RESULTS: We found that seizures induced by pilocarpine decreased Lrp4 expression level and increased miR-351-5p expression level in mice hippocampus. Glutamate reduced Lrp4 expression and enhanced miR-351-5p expression in cultured hippocampal astrocytes, and these effects can be partially attenuated by AP5. Furthermore, miR-351-5p inhibitor lessened the reduction of Lrp4 expression in glutamate treated hippocampal astrocytes. Local reduction of Lrp4 in hippocampus by sh Lrp4 lentivirus injection in hippocampus increased the threshold of seizures in pilocarpine or pentylenetetrazol (PTZ) injected mice. CONCLUSIONS: These results indicated that high released glutamate induced by seizures down-regulated astrocytic Lrp4 through increasing miR-351-5p in hippocampal astrocytes via activating astrocytic NMDA receptor, and locally reduction of Lrp4 in hippocampus increased the threshold of seizures. Lrp4 in hippocampal astrocytes appears to serve as a negative feedback factor in seizures. This provides a new potential therapeutic target for seizures regulation.

18.
RSC Adv ; 10(17): 10076-10081, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498592

RESUMO

Usually, Al-Ga alloys are prepared by heating materials to hundreds of degrees for a long time, and the alloys obtained are in the solid state. Although some Ga-rich liquid Al-Ga composites have been developed lately, the mass percentage of Al is small, due to which the hydrogen generation rate and efficiency are limited. Besides, an alkaline solution is indispensable in these studies, which is also a limitation. In this paper, a semisolid Al-Ga composite has been fabricated by mixing liquid gallium and fragmented aluminium foils at room temperature, which is an effective means to generate hydrogen from pure water. With the increase in the Al proportion, the mixture changes from a liquid to a cement-like semisolid material morphologically. Furthermore, an application of the fuel cell taking advantage of the hydrogen released from the composites is given. This method does not require a high-temperature device and only requires water to produce hydrogen once the semisolid Al-Ga composite material is fabricated. Therefore, this is a new approach for making more portable and safer devices for hydrogen production.

19.
Cell Biosci ; 9: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30651970

RESUMO

BACKGROUND: Transmembrane protein 108 (Tmem108) is a risk gene of psychiatric diseases including schizophrenia, bipolar disorder and major depression disorder. However, the pathophysiological mechanisms of Tmem108 are largely unknown. RESULTS: Here we investigated the pathophysiological function of Tmem108 in the hippocampal dentate gyrus by using Tmem108 mutant mice. Tmem108 highly expressed in the dentate gyrus and CA3 of the hippocampus. Dentate gyrus is a brain region where adult neurogenesis occurs, and aberrant adult neurogenesis in dentate gyrus has been implicated in major depression disorder. Indeed, Tmem108 mutant mice had lower immobility than wild type mice in tail suspension test and forced swimming test. BrdU and anti-Ki67 antibody staining indicated that adult neurogenesis of the hippocampal dentate gyrus region decreased in Tmem108 mutant mice. qPCR results showed that expression of Axin2, DISC1 and ß-Catenin, three dentate gyrus adult neurogenesis related genes in Wnt/ß-Catenin signaling pathway, decreased in Tmem108 mutant mice. Furthermore, Tmem108 enhanced free ß-Catenin level in dual luciferase assay. CONCLUSIONS: Thus, our data suggest that Tmem108 increases adult neurogenesis and plays a complexity role in psychiatric disorders.

20.
J Vis Exp ; (139)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30247474

RESUMO

Sectioning of the paraffin-embedded tissue is widely used in histology and pathology. However, it is tedious. To improve this method, several commercial companies have devised complex section transfer systems using fluid water. To simplify this technology, we created a simple method using homemade equipment that combines cutting and floating within a simple thermostatic chamber; therefore, the sections automatically enter the water bath on the water surface. The hippocampus from adult mouse brains, adult mouse kidneys, embryonic mouse brains, and adult zebrafish eyes were cut using both conventional paraffin sectioning and the presented method for comparison. Statistical analysis shows that our improved method saved time and produced higher quality sections. In addition, paraffin sectioning of a whole specimen in a short time is easy for junior operators.


Assuntos
Inclusão em Parafina/métodos , Animais , Encéfalo/citologia , Olho/citologia , Rim/citologia , Camundongos , Fatores de Tempo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...