Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acad Radiol ; 31(3): 889-899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37798206

RESUMO

RATIONALE AND OBJECTIVES: Following autosomal dominant polycystic kidney disease (ADPKD) progression by measuring organ volumes requires low measurement variability. The objective of this study is to reduce organ volume measurement variability on MRI of ADPKD patients by utilizing all pulse sequences to obtain multiple measurements which allows outlier analysis to find errors and averaging to reduce variability. MATERIALS AND METHODS: In order to make measurements on multiple pulse sequences practical, a 3D multi-modality multi-class segmentation model based on nnU-net was trained/validated using T1, T2, SSFP, DWI and CT from 413 subjects. Reproducibility was assessed with test-re-test methodology on ADPKD subjects (n = 19) scanned twice within a 3-week interval correcting outliers and averaging the measurements across all sequences. Absolute percent differences in organ volumes were compared to paired students t-test. RESULTS: Dice similarlity coefficient > 97%, Jaccard Index > 0.94, mean surface distance < 1 mm and mean Hausdorff Distance < 2 cm for all three organs and all five sequences were found on internal (n = 25), external (n = 37) and test-re-test reproducibility assessment (38 scans in 19 subjects). When averaging volumes measured from five MRI sequences, the model automatically segmented kidneys with test-re-test reproducibility (percent absolute difference between exam 1 and exam 2) of 1.3% which was better than all five expert observers. It reliably stratified ADPKD into Mayo Imaging Classification (area under the curve=100%) compared to radiologist. CONCLUSION: 3D deep learning measures organ volumes on five MRI sequences leveraging the power of outlier analysis and averaging to achieve 1.3% total kidney test-re-test reproducibility.


Assuntos
Aprendizado Profundo , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Tamanho do Órgão , Reprodutibilidade dos Testes , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
2.
J Magn Reson Imaging ; 58(4): 1153-1160, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36645114

RESUMO

BACKGROUND: Total kidney volume (TKV) is an important biomarker for assessing kidney function, especially for autosomal dominant polycystic kidney disease (ADPKD). However, TKV measurements from a single MRI pulse sequence have limited reproducibility, ± ~5%, similar to ADPKD annual kidney growth rates. PURPOSE: To improve TKV measurement reproducibility on MRI by extending artificial intelligence algorithms to automatically segment kidneys on T1-weighted, T2-weighted, and steady state free precession (SSFP) sequences in axial and coronal planes and averaging measurements. STUDY TYPE: Retrospective training, prospective testing. SUBJECTS: Three hundred ninety-seven patients (356 with ADPKD, 41 without), 75% for training and 25% for validation, 40 ADPKD patients for testing and 17 ADPKD patients for assessing reproducibility. FIELD STRENGTH/SEQUENCE: T2-weighted single-shot fast spin echo (T2), SSFP, and T1-weighted 3D spoiled gradient echo (T1) at 1.5 and 3T. ASSESSMENT: 2D U-net segmentation algorithm was trained on images from all sequences. Five observers independently measured each kidney volume manually on axial T2 and using model-assisted segmentations on all sequences and image plane orientations for two MRI exams in two sessions separated by 1-3 weeks to assess reproducibility. Manual and model-assisted segmentation times were recorded. STATISTICAL TESTS: Bland-Altman, Schapiro-Wilk (normality assessment), Pearson's chi-squared (categorical variables); Dice similarity coefficient, interclass correlation coefficient, and concordance correlation coefficient for analyzing TKV reproducibility. P-value < 0.05 was considered statistically significant. RESULTS: In 17 ADPKD subjects, model-assisted segmentations of axial T2 images were significantly faster than manual segmentations (2:49 minute vs. 11:34 minute), with no significant absolute percent difference in TKV (5.9% vs. 5.3%, P = 0.88) between scans 1 and 2. Absolute percent differences between the two scans for model-assisted segmentations on other sequences were 5.5% (axial T1), 4.5% (axial SSFP), 4.1% (coronal SSFP), and 3.2% (coronal T2). Averaging measurements from all five model-assisted segmentations significantly reduced absolute percent difference to 2.5%, further improving to 2.1% after excluding an outlier. DATA CONCLUSION: Measuring TKV on multiple MRI pulse sequences in coronal and axial planes is practical with deep learning model-assisted segmentations and can improve TKV measurement reproducibility more than 2-fold in ADPKD. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Estudos Retrospectivos , Estudos Prospectivos , Reprodutibilidade dos Testes , Inteligência Artificial , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
3.
Tomography ; 8(1): 447-456, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35202202

RESUMO

PURPOSE: To develop and integrate interactive features with automatic methods for accurate liver cyst segmentation in patients with autosomal dominant polycystic kidney and liver disease (ADPKD). METHODS: SmartClick and antiSmartClick were developed using iterative region growth guided by spatial and intensity connections and were integrated with automated level set (LS) segmentation and graphical user interface, forming an intelligent rapid interactive segmentation (IRIS) tool. IRIS and LS segmentations of liver cysts on T2 weighted images of patients with ADPKD (n = 17) were compared with manual segmentation as ground truth (GT). RESULTS: Compared to manual GT, IRIS reduced the segmentation time by more than 10-fold. Compared to automated LS, IRIS reduced the mean liver cyst volume error from 42.22% to 13.44% (p < 0.001). IRIS segmentation agreed well with manual GT (79% dice score and 99% intraclass correlation coefficient). CONCLUSION: IRIS is feasible for fast, accurate liver cyst segmentation in patients with ADPKD.


Assuntos
Cistos , Hepatopatias , Rim Policístico Autossômico Dominante , Cistos/diagnóstico por imagem , Humanos , Rim , Hepatopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...