Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116414, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714086

RESUMO

BACKGROUND: Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers. Laboratory studies have shown that OPEs exhibit osteotoxicity by inhibiting osteoblast differentiation; however, little is known about how OPEs exposure is associated with bone health in humans. OBJECTIVES: We conducted a cross-sectional study to investigate the association between OPEs exposure and bone mineral density (BMD) in adults in the United States using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). METHODS: Multivariate linear regression models were used to assess the association between concentrations of individual OPE metabolites and BMDs. We also used the Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models to estimate joint associations between OPE mixture exposure and BMDs. All the analyses were stratified according to gender. RESULTS: A total of 3546 participants (median age, 40 years [IQR, 30-50 years]; 50.11% male) were included in this study. Five urinary OPE metabolites with a detection rate of > 50% were analyzed. After adjusting for the potential confounders, OPE metabolite concentrations were associated with decreased total-body BMD and lumbar spine BMD in males, although some associations only reached significance for bis(1-chloro-2-propyl) phosphate (BCPP), dibutyl phosphate (DBUP), and bis(2-chloroethyl) phosphate (BCEP) (ß = -0.013, 95% CI: -0.026, -0.001 for BCPP and total-body BMD; ß = -0.022, 95% CI: -0.043, -0.0001 for DBUP and lumbar spine BMD; ß=-0.018, 95% CI: -0.034, -0.002 for BCEP and lumbar spine BMD). OPE mixture exposure was also inversely associated with BMD in males, as demonstrated in the BMKR and qgcomp models. CONCLUSIONS: This study provides preliminary evidence that urinary OPE metabolite concentrations are inversely associated with BMD. The results also suggested that males were more vulnerable than females. However, further studies are required to confirm these findings.

2.
J Colloid Interface Sci ; 665: 172-180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522157

RESUMO

Aqueous rechargeable Zn-based batteries (ARZBs) have attracted increasing attention as favorable candidates for energy storage systems due to their high security, environmental friendliness, and abundance of electrode materials. At present, the most widely reported materials used in cobalt-zinc (Co-Zn) batteries are cobalt-based oxides and their derivatives, however, they still exhibit low actual capacities and unsatisfactory cycle lives. Metal-organic frameworks (MOFs), as a new class of porous materials with high specific surface area and adjustable pore size, have attracted considerable attention in the field of energy storage. Currently, pristine MOFs have currently few applications in Co-Zn batteries, and their performance is not ideal. Herein, we report a series of two-dimensional (2D) bimetallic CoM-MOF (M = Ni, Mn, Mg and Cu) nanosheets based on trimesic acid (H3BTC) ligand as cathodes for alkaline Co-Zn batteries via a simple one-pot hydrothermal synthesis. Among the synthesized MOFs, the CoNi-MOF nanosheets have the best performance, exhibiting a high reversible capacity of 344 mA h g-1 and demonstrating a good cycling life with 90 % capacity retention at 20 A g-1 after 1500 cycles. The energy storage mechanism is studied through a series of ex-situ characterizations. This study is of great importance in advancing the application of 2D pristine MOFs for high-performance Co-Zn batteries.

3.
J Colloid Interface Sci ; 662: 490-504, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364474

RESUMO

Aqueous zinc ion batteries (AZIBs) and aqueous magnesium ion batteries (AMIBs) offer powerful alternatives for large-scale energy storage because of their high safety and low cost. Consequently, the design of high-performance cathode materials is essential. In this paper, we present a simple strategy that combines oxygen defect (Od) engineering with a 2D-on-2D homogeneous nanopape-like bilayer V2O5 nH2O xerogel (BL-HVOd NPS). This strategy employs Od to improve Zn2+/Mg2+insertion/extraction kinetics and reduce irreversible processes for high-performance AZIBs/AMIBs. And interlayer water molecules serve as an effective spacer to stabilize the expanded interlayer gap in BL-HVOd NPS, thereby providing extended diffusion channels for Zn2+/Mg2+ during insertion/extraction. The interlayer water molecules help shield the electrostatic interaction between Zn2+/Mg2+ and BL-HVOd NPS lattice, which improves diffusion kinetics during repeated. In addition, electrochemical characterization results indicate that the BL-HVOd NPS can effectively the surface adsorption and internal diffusion of Zn2+/Mg2+. More importantly, the successfully prepared unique 2D-on-2D homogenous nanopaper structure enhances electrolyte/electrode contact and reduces the migration/diffusion path of electrons/Zn2+ and Mg2+, thus greatly improving rate performance. As a result, the BL-HVOd NPS as AZIBs/AMIBs electrodes offer better reversible capacity of 361.8 and 162.8 mA h g-1 (at 0.2 A g-1), while displaying impressively long cycle lifes. This method provides a way to prepare advanced xerogel cathode materials for AZIBs and AMIBs.

4.
Inorg Chem ; 63(4): 1962-1973, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38236237

RESUMO

One 3D Cd-MOF, namely, {[(HDMA)2][Cd3(L)2]·5H2O·2DMF}n (LCU-124, LCU indicates Liaocheng University), was synthesized from an ether-containing ligand 1,3-bis(3,5-dicarboxylphenoxy)benzene (H4L). Its Ln3+-postmodified samples, Eu3+@LCU-124 and Tb3+@LCU-124, were obtained through cation exchange of dimethylamine cation (HDMA) with Eu3+ and Tb3+. The successful entry of rare earth into LCU-124 by cation exchange modification was verified by IR, XRD, XPS, EDS mapping, and luminescence spectra. The proportion of Eu3+/Tb3+ was adjusted during the modification process, leading to fluorescent materials with different emissions. Luminescence measurements indicated that these complexes exhibited interesting multiresponsive sensing activities toward biomarkers urine acid (UA), quinine (QN), and quinidine (QND). First, LCU-124 has a pronounced quenching effect toward UA with the detection limit of 31.01 µM. After modification, the visualization of the detection was improved significantly and the detection limit of Eu3+@LCU-124 was reduced to 0.868 µM. Second, when QN and QND were present in the suspensions of Eu3+@LCU-124 and Tb3+@LCU-124, strong blue light emission peaks occurred, while the characteristic emission of Eu3+/Tb3+ decreased, forming ratiometric fluorescent sensors with the detection limit in the range of 0.199-9.49 µM. The fluorescent probes have high selectivity, excellent sensitivity recycling, and fast response time (less than 1 min). Besides, a simple logic gate circuit and a range of luminescent mixed matrix membranes were designed to provide simple and fast detection of above biomarkers. Our work indicated that modification of Eu3+/Tb3+ could improve the detection ability significantly.

5.
Dalton Trans ; 53(8): 3654-3665, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289280

RESUMO

Two new metal-organic frameworks (MOFs), namely, {[Zn(HL)(bpea)]·DMF}n (Zn-MOF-1) and {[Co(HL)(bpea)]·DMF}n (Co-MOF-2) (H3L = 3-(3,5-dicarboxybenzyloxy)benzoic acid, bpea = 1,2-di(pyridyl)ethane), were obtained by the reaction of H3L and N-containing ligand bpea with Zn(NO3)2·6H2O and Co(NO3)2·6H2O, respectively. The isomorphic Zn-MOF-1 and Co-MOF-2 featured a 3D penetrating framework with different stabilities, luminescence, and catalytic properties. Luminescence measurement indicated that Zn-MOF-1 could be used to detect Al3+ through a turn-on effect with a detection limit of 0.42 µM. The sensing mechanism experiments showed that the enhanced luminescence of Zn-MOF-1 toward Al3+ may be due to the weak interaction between Al3+ and Zn-MOF-1 and the absorbance-caused enhancement (ACE) mechanism. Meanwhile, both Zn-MOF-1 and Co-MOF-2 showed interesting CO2 adsorption properties and could catalyze the cycloaddition of CO2 to epoxides resulting in 96 and 92% ideal products within 12 hours, respectively. They can be cycled up to 5 times without significant loss of catalytic efficiency.

6.
J Environ Manage ; 348: 119223, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827085

RESUMO

The recovery of phosphorus (P) through vivianite crystallization offers a promising approach for resource utilization in wastewater treatment plants. However, this process encounters challenges in terms of small product size and low purity. The study aimed to assess the feasibility of using quartz sand as a seed material to enhance P recovery and vivianite crystal characteristics from anaerobic fermentation supernatant. Various factors, including seed dosage, seed size, Fe/P ratio, and pH, were systematically tested in batch experiments to assess their influence. Results demonstrated that the effect of seed enhancement on vivianite crystallization was more pronounced under higher seed dosages, smaller seed sizes, and lower pH or Fe/P ratio. The addition of seeds increased P recovery by 4.43% in the actual anaerobic fermentation supernatant and also augmented the average particle size of the recovered product from 19.57 to 39.28 µm. Moreover, introducing quartz sand as a seed material effectively reduced co-precipitation, leading to a notable 12.5% increase in the purity of the recovered vivianite compared to the non-seeded process. The formation of an ion adsorption layer on the surface of quartz sand facilitated crystal attachment and growth, significantly accelerating the vivianite crystallization rate and enhancing P recovery. The economic analysis focused on chemical costs further affirmed the economic viability of using quartz sand as a seed material for P recovery through vivianite crystallization, which provides valuable insights for future research and engineering applications.


Assuntos
Fósforo , Quartzo , Fermentação , Areia , Anaerobiose , Cristalização , Esgotos , Eliminação de Resíduos Líquidos , Fosfatos/química , Compostos Ferrosos/química
7.
Dalton Trans ; 52(45): 16650-16660, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905736

RESUMO

Metal-organic frameworks (MOFs) are promising competitive candidates as fillers for Nafion proton exchange membrane (PEM). Increasing efforts have been made to explore methods for synthesizing MOF fillers and the mechanism by which MOF doping improves the proton conductivity (σH+) values of composite membranes. In this study, a Pb(II) cation with strong polarizing force was selected for the hydrothermal reaction with a simple sulfoterephthalate ligand (H3L). Pb-MOF [Pb2L(OH)]n was obtained, which was constructed using Pb-O layers and deprotonated sulfoterephthalate L3- and exhibited good thermal and water stability. Different amounts of Pb-MOF particles were doped into Nafion to fabricate Pb-MOF/Nafion-x composite membranes, which were characterized using SEM, PXRD, IR spectroscopy, TGA, and other methods. It was found that doping Pb-MOF can apparently improve the water absorbability and thermal stability of the composite membrane. The σH+ of the Pb-MOF/Nafion-7 composite membrane was the highest and 2.14 times that of the pure Nafion membrane at 353 K. The higher proton conduction properties may be explained by the strong polarization force, and Pb(II) cations on the surface of Pb-MOF can decrease the bond energy of the O-H bond of absorbed water molecules and increase the acidity of the composite membrane. The phenomena in this study and our previous study confirm that acidity is the most important factor in favor of proton conductivity.

8.
Inorg Chem ; 62(43): 17705-17712, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37844205

RESUMO

Accurate matching of the active sites between the host and guest molecules has a great effect on the selective recognition of different but similar guest molecules or different binding abilities toward the same molecule. Herein, a pseudotetrahedral metal-organic cage (MOC, Co-TAP) that contains secondary amino groups designed as guest-interacting sites was achieved. Co-TAP exhibits the selective recognition of uridine over other similar natural molecules via a fluorescent response. However, a reference structure (Co-TOP) with the same configuration was also synthesized by replacing the secondary amine group with an oxygen atom of the ligand, and it reveals the selective recognition of guanosine. In addition, the accurate matching also enables Co-TAP to strongly bind the organic dye as a guest molecule via host-guest interactions, thus facilitating photoinduced electron transfer between the redox catalytic sites in MOC and the excited guest via a pseudointramolecular pathway.

9.
Inorg Chem ; 62(34): 13832-13846, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37591631

RESUMO

The discharge of harmful and toxic pollutants in water is destroying the ecosystem balance and human being health at an alarming rate. Therefore, the detection and removal of water pollutants by using stable and efficient materials are significant but challenging. Herein, three novel lanthanide metal-organic frameworks (Ln-MOFs), [La(L)(DMF)2(H2O)2]·H2O (LCUH-104), [Nd(L)(DMF)2(H2O)2]·H2O (LCUH-105), and [Pr(L)(DMF)2(H2O)2]·H2O (LCUH-106) [H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid (H3TZI)] were solvothermally constructed and structurally characterized. In the three Ln-MOFs, dinuclear metallic clusters {Ln2} were connected by deprotonated tetrazol-containing dicarboxylate TZI3- to obtain a 2D layered framework with a point symbol of {42·84}·{46}. Their excellent chemical and thermal stabilities were beneficial to carry out fluorescence sensing and achieve the catalytic nitrophenols (NPs) reduction. Especially, the incorporation of the nitrogen-rich tetrazole ring into their 2D layered frameworks enables the fabrication of Pd nanocatalysts (Pd NPs@LCUH-104/105/106) and have dramatically enhanced catalytic activity by using the unique metal-support interactions between three Ln-MOFs and the encapsulating palladium nanoparticles (Pd NPs). Specifically, the reduction of NPs (2-NP, 3-NP, and 4-NP) in aqueous solution by Pd NPs@LCUH-104 exhibits exceptional conversion efficiency, remarkable rate constants (k), and outstanding cycling stability. The catalytic rate of Pd NPs@LCUH-104 for 4-NP is nearly 8.5 times more than that of Pd/C (wt 5%) and its turnover frequency value is 0.051 s-1, which indicate its excellent catalytic activity. Meanwhile, LCUH-105, as a multifunctional fluorescence sensor, exhibited excellent fluorescence detection of norfloxacin (NFX) (turn on) and Cr2O72- (turn off) with high selectivity and sensitivity at a low concentration, and the corresponding fluorescence enhancement/quenching mechanism has also been systematically investigated through various detection means and theoretical calculations.

10.
Sci Total Environ ; 897: 165416, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37433337

RESUMO

Recovery of phosphorus (P) via vivianite crystallization is an effective strategy to recycle resources from the anaerobic fermentation supernatant. However, the presence of different components in the anaerobic fermentation supernatant (e.g., polysaccharides and proteins) might alter conditions for optimal growth of vivianite crystals, resulting in distinct vivianite characteristics. In the present study, the effect of different components on vivianite crystallization was explored. Then, the reaction parameters (pH, Fe/P, and stirring speed) for P recovery from synthetic anaerobic fermentation supernatant as vivianite were optimized using response surface methodology, and the relationship between crystal properties and supersaturation was elucidated using a thermodynamic equilibrium model. The optimized values for pH, Fe/P, and stirring speed were found to be 7.8, 1.74, and 500 rpm respectively, resulting in 90.54 % P recovery efficiency. Moreover, the variation of reaction parameters did not change the crystalline structure of the recovered vivianite but influenced its morphology, size, and purity. Thermodynamic analysis suggested the saturation index (SI) of vivianite increased with increasing pH and Fe/P ratio, leading to a facilitative effect on vivianite crystallization. However, when the SI was >11, homogenous nucleation occurred so that the nucleation rate was much higher than the crystal growth rate, causing a smaller crystal size. The findings presented herein will be highly valued for the future large-scale application of the vivianite crystallization process for wastewater treatment.


Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Fermentação , Cristalização , Anaerobiose , Esgotos , Fosfatos , Compostos Ferrosos
11.
BMC Cancer ; 23(1): 425, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37165412

RESUMO

BACKGROUND: Previously studies shown a potential risk of antihypertensive medicines in relation to cancer susceptibility, which creating significant debate in the scientific community and public concern. We sought to investigate the relationship between antihypertensive medicines and cancer risk, by drug type and class. METHODS: We conducted a population-based cohort study and enrolled patients diagnosed with hypertension from community healthcare centers in Changning District, Shanghai, China. Antihypertensive drug administration were classified as five common antihypertensive drugs. The main outcomes were incidence of total cancer and by major cancer type. RESULTS: Between January 2013 and December 2017, a total of 101,370 hypertensive patients were enrolled in this cohort. During a mean follow-up of 5.1 (SD 1.3) years, 4970 cancer cases were newly diagnosed in the cohort. CCBs were the most frequently used antihypertensives which were associated with a moderately increased risk of total cancer (hazard ratio, HR = 1.11, 95% CI: 1.05-1.18). The second commonly used drug ARBs were also associated with increased risk of total cancer (HR = 1.10, 95%CI: 1.03-1.17) as well as lung and thyroid cancers (HR = 1.21, 95%CI: 1.05-1.39; HR = 1.62 95%CI: 1.18-2.21, respectively). No significant association was found between cancer and other antihypertensives. Hypertensive patients who use more than one class of antihypertensives drugs had a higher risk of total cancer (HR: 1.22, 95%CI: 1.10-1.35 for two classes; HR: 1.22, 95%CI: 1.03-1.45 for three or more classes), and a possible dose-response relationship was suggested (P for trend < 0.001). The risk of thyroid cancer was higher in hypertensive patients prescribed with three or more antihypertensive classes. CONCLUSIONS: Use of ARBs or CCBs may be associated with an increased risk of total cancer. Taking more than one class of antihypertensives drugs appeared to have a higher risk for total cancer.


Assuntos
Hipertensão , Neoplasias da Glândula Tireoide , Humanos , Anti-Hipertensivos/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Estudos de Coortes , Bloqueadores dos Canais de Cálcio/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , China/epidemiologia , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Neoplasias da Glândula Tireoide/tratamento farmacológico
12.
Chemistry ; 29(37): e202300185, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37114825

RESUMO

Supramolecular chemistry has become an interdisciplinary discipline of chemistry, physics, and biology. As a huge subunit of supramolecular compounds, the functional metal-organic supramolecular systems with well-defined cavities which are able to accommodate size-suitable guests via benign host-guest behavior, have been known as "metal-organic molecular containers" (MOMCs) and attracted much attentions for their rich chemical properties and wide potential applications in molecular recognition, catalysis, bio-medical and other fields. In particular, the MOMCs with flexible backbones exhibit a unique feature both in the aspect of structural construction and applications, due to the free rotation and self-adaptively of the specific functional groups in the skeletons. In this paper, we review several selected examples of the coordination-driven metal-organic supramolecular systems from the aspects of self-assembly construction to the various applications. The self-assembly strategies, especially the different choice of organic ligands with flexible backbones during the construction, leading to quite diverse configurations compared to the rigid ligands, have been also discussed to show a different perspective of metal-organic system construction.

13.
Angew Chem Int Ed Engl ; 62(34): e202303280, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37040089

RESUMO

Dispersing metal-organic framework (MOF) solids in stable colloids is crucial for their availability and processibility. Herein, we report a crown ether surface coordination approach for functionalizing the surface-exposed metal sites of MOF particles with amphiphilic carboxylated crown ether (CEC ). The surface-bound crown ethers significantly improve MOF solvation without compromising the accessible voids. We demonstrate that CEC -coated MOFs exhibit exceptional colloidal dispersibility and stability in 11 distinct solvents and six polymer matrices with a wide range of polarities. The MOF-CEC can be instantaneously suspended in immiscible two-phase solvents as an effective phase-transfer catalyst and can form various uniform membranes with enhanced adsorption and separation performance, which highlights the effectiveness of crown ether coating.

14.
Cancer Med ; 12(9): 10385-10392, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916410

RESUMO

BACKGROUND: Lymph node metastasis risk stratification is crucial for the surgical decision-making of thyroid cancer. This study investigated whether the integrated gene profiling (combining expression, SNV, fusion) of Fine-Needle Aspiration (FNA) samples can improve the prediction of lymph node metastasis in patients with papillary thyroid cancer. METHODS: In this retrospective cohort study, patients with papillary thyroid cancer who went through thyroidectomy and central lymph node dissection were included. Multi-omics data of FNA samples were assessed by an integrated array. To predict lymph node metastasis, we built models using gene expressions or mutations (SNV and fusion) only and an Integrated Risk Stratification (IRS) model combining genetic and clinical information. Blinded histopathology served as the reference standard. ROC curve and decision curve analysis was applied to evaluate the predictive models. RESULTS: One hundred and thirty two patients with pathologically confirmed papillary thyroid cancer were included between 2016-2017. The IRS model demonstrated greater performance [AUC = 0.87 (0.80-0.94)] than either expression classifier [AUC = 0.67 (0.61-0.74)], mutation classifier [AUC = 0.61 (0.55-0.67)] or TIRADS score [AUC = 0.68 (0.62-0.74)] with statistical significance (p < 0.001), and the IRS model had similar predictive performance in large nodule [>1 cm, AUC = 0.88 (0.79-0.97)] and small nodule [≤1 cm, AUC = 0.84 (0.74-0.93)] subgroups. The genetic risk factor showed independent predictive value (OR = 10.3, 95% CI:1.1-105.3) of lymph node metastasis in addition to the preoperative clinical information, including TIRADS grade, age, and nodule size. CONCLUSION: The integrated gene profiling of FNA samples and the IRS model developed by the machine-learning method significantly improve the risk stratification of thyroid cancer, thus helping make wise decisions and reducing unnecessary extensive surgeries.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/cirurgia , Câncer Papilífero da Tireoide/patologia , Biópsia por Agulha Fina , Estudos Retrospectivos , Metástase Linfática/patologia , Carcinoma Papilar/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Medição de Risco , Linfonodos/patologia
15.
Inorg Chem ; 62(14): 5565-5575, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36989459

RESUMO

Two dimeric {ε-Zn4PMo12}-based metal-organic frameworks (MOFs), [ε-PMo8VMo4VIO34(OH)6Zn4][LO] (SDUT-21, LO = [5-((4'-carboxybenzyl)oxy)isophthalic acid]) and [TBA]3[ε-PMo8VMo4VIO37(OH)3Zn4][LN] (SDUT-22, TBA+ = tetrabutylammonium ion, LN = [5-((4-carboxybenzyl)imino)isophthalic acid]), combining the advantages of polyoxometalates (POMs) and MOFs, were synthesized by the one-pot assembly strategy. The dimeric {ε-Zn4PMo12} units act as nodes that are linked by the flexible ligands and extended into two- or three-dimensional frameworks. The cyclic voltammetry and proton conductivity measurements of SDUT-21 and SDUT-22 were performed and indicated the high electron and proton transfer abilities. These materials also e xhibited the catalytic performance for the synthesis of quinazolinones in the heterogeneous state, and the different binding capacities toward the substrates caused the catalytic activity of SDUT-21 to be higher than that of SDUT-22 under the same conditions. In addition, the used catalysts could be readily recovered for five successive cycles and maintained high catalytic efficiency.

16.
Inorg Chem ; 62(8): 3573-3584, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36786546

RESUMO

It is necessary to find more simple methods to improve the detection selectivity and sensitivity of antibiotics. Herein, we constructed a novel three-dimensional (3D) Cd-MOF LCU-117 assembled from p-terphenyl-4,2″,5″,4'-tetracarboxylic acid, which showed a special 3D helical structure with carboxylic acid ligands and nitrogen-containing ligands crossing each other vertically. Luminescence measurements indicated that LCU-117 has high selectivity and sensitivity toward Eu3+ through the ratiometric effect. Meanwhile, this complex itself could detect antibiotics oxytetracycline (OTC) through the turn-off mechanism. When Eu3+ was added in suspensions of LCU-117 (noted as Eu3+@LCU-117), the detection toward OTC was enhanced significantly and visually. The sensing mechanism was investigated in detail by various measurements and theoretical calculations. LCU-117 has a good effect on the logic gate, potential fingerprint detection, and mixed-matrix membranes (MMMs). The practical application for monitoring OTC in water samples also provided a satisfactory result.


Assuntos
Compostos Heterocíclicos , Estruturas Metalorgânicas , Oxitetraciclina , Estruturas Metalorgânicas/química , Cádmio , Suspensões , Ligantes , Antibacterianos/química
17.
J Environ Manage ; 331: 117324, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657201

RESUMO

Vivianite crystallization has been regarded as a suitable option for recovering phosphorus (P) from P-containing wastewater. However, the presence of humic substances (HS) would inevitably affect the formation of vivianite crystals. Therefore, the influences of HS on vivianite crystallization and the changes in the harvested vivianite crystals were investigated in this study. The results suggested the inhibition effect of 70 mg/L HS on vivianite crystallization reached 12.24%, while it could be attenuated by increasing the pH and Fe/P ratio of the solution. Meanwhile, the addition of HS altered the size, purity, and morphology of recovered vivianite crystals due to the blockage of the growth sites on the crystal surface. Additionally, the formation of phosphate ester group, hydrogen bonding, and COOH-Fe2+ complexes are the potential mechanisms of HS interaction with vivianite crystals. The results obtained herein will help to elucidate the underlying mechanism of HS on vivianite crystallization from P-containing wastewater.


Assuntos
Fósforo , Águas Residuárias , Fósforo/química , Substâncias Húmicas , Cristalização , Eliminação de Resíduos Líquidos , Fosfatos/química
18.
Angew Chem Int Ed Engl ; 62(11): e202216950, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36625196

RESUMO

To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a "pre-division metal clusters" strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN4 sites and wrapped Co2 P nanoclusters as dual-active centers (Co2 P/CoN4 @NSC-500). A crystalline {CoII 2 } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination. The optimal Co2 P/CoN4 @NSC-500 executes excellent 4e- ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2 P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn-air battery (ZAB) assembled by Co2 P/CoN4 @NSC-500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm-2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.

19.
Inorg Chem ; 62(5): 2083-2094, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36700880

RESUMO

Two supramolecular Co-MOF isomers, namely, {[Co(L)0.5(m-bimb)]·3H2O}n (LCU-115) and {[Co(L)0.5(p-bimb)]·3H2O}n (LCU-116), were synthesized from an amide-containing carboxylic acid N,N″-(3,5-dicarboxylphenyl)benzene-1,4-dicarboxamide (H4L) and two flexible positional isostructural N-containing ligands m-bimb and p-bimb (m-bimb = 1,3-bis((1H-imidazol-1-yl)methyl)benzene; p-bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene). The carboxylate ligands connect Co(II) centers to form 2D metal-carboxylate sheets, which are extended further by m-bimb and p-bimb to form a 2D bilayer with parallel stacking (LCU-115) and a 3D framework (LCU-116), respectively. Luminescence measurements indicated that these two complexes exhibited interesting multiresponsive sensing activities toward pH, biomarker N-acetylneuraminic acid, and trivalent cations Ga3+/In3+. They show highly sensitive turn-on fluorescence responses in the acidic range and can also be regarded as on-off-on vapoluminescent sensors to typical acidic and basic gases HCl and Et3N. It is worth noting that these complexes have excellent turn-on ratiometric fluorescence sensing ability for N-acetylneuraminic acid (NANA) with detection limits as low as 7.39 and 8.06 µM, respectively. Furthermore, they were successfully applied for the detection of NANA in simulated urine and serum samples with satisfactory results. For ion detection, LCU-116 could detect both Ga3+ and In3+, while LCU-115 could distinguish Ga3+ from In3+ with the latter showing luminescence quenching. The sensing mechanism was investigated in detail by XRD, UV-vis, EDS, XPS, SEM, and TEM. The results of interday and intraday precision studies gave low RSD values in the range of 1.19-3.53%, ascertaining the reproducibility of these sensors. The recoveries for the sensing analytes in simulated urine/serum or real water are satisfactory from 96.7 to 103.3% (toward NANA) and 96.6 to 115.0% (toward Ga3+ and In3+), indicating that these two complexes also possess acceptable reliability for monitoring in real samples. The results indicated that the supramolecular isomers LCU-115 and LCU-116 are promising material candidates for application in biological and environmental monitoring.


Assuntos
Luminescência , Estruturas Metalorgânicas , Ácido N-Acetilneuramínico , Reprodutibilidade dos Testes , Ligantes , Benzeno , Modelos Moleculares , Cristalografia por Raios X , Metais/química , Ácidos Carboxílicos/química
20.
Front Plant Sci ; 13: 1050132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507454

RESUMO

The plant hormone ABA (abscisic acid) plays an extremely important role in plant growth and adaptive stress, including but are not limited to seed germination, stomatal closure, pathogen infection, drought and cold stresses. Reactive oxygen species (ROS) are response molecules widely produced by plant cells under biotic and abiotic stress conditions. The production of apoplast ROS is induced and regulated by ABA, and participates in the ABA signaling pathway and its regulated plant immune system. In this review, we summarize ABA and ROS in apoplast ROS production, plant response to biotic and abiotic stresses, plant growth regulation, ABA signal transduction, and the regulatory relationship between ABA and other plant hormones. In addition, we also discuss the effects of protein post-translational modifications on ABA and ROS related factors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...