Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(35): 13242-13249, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615488

RESUMO

Glutathione (GSH) plays a vital role in many physiological processes, and its abnormal levels have been found to be associated with several diseases. In contrast to traditional methods using electron donor-containing electrolytes for photoelectrochemical (PEC) sensing, in this study, a target-driven electron donor generation in a PEC electrode was developed to detect GSH. Using well-aligned TiO2 nanotube arrays (TNTs) as the PEC substrate, mesoporous MIL-125(Ti) was grown in the TNTs through an in situ solvothermal method and subsequent two-step annealing treatment. The accommodation capacity of mesoporous MIL-125(Ti) allows a well loading of cystine and Pt nanoclusters (NCs). Taking advantage of the specific cleavage ability of disulfide bonds by GSH, cystine was converted to cysteine, which served as the electron donor for the PEC process. Benefiting from the confinement effect of mesoporous MIL-125(Ti), cysteine was effectively oxidized to cysteine sulfinic acid by the photogenerated holes. Importantly, the highly active Pt NCs decorated in the mesopores not only improved the charge transfer but also accelerated the above oxidation reaction. The synergistic effect of these factors enabled the efficient separation of the photogenerated electron-hole pairs, which induced a significant photocurrent increase and in turn led to the high-sensitivity detection of GSH. Consequently, the proposed PEC biosensor exhibited excellent performance in the detection of GSH in serum specimens. The target-driven electron donor generation designed in this study might open a new route for developing sensitive and selective PEC biosensors with application in complex biological environments.


Assuntos
Cisteína , Cistina , Elétrons , Eletrodos , Glutationa
2.
ACS Appl Mater Interfaces ; 13(27): 32450-32460, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34196518

RESUMO

Lead iodide (PbI2) as a layered material has emerged as an excellent candidate for optoelectronics in the visible and ultraviolet regime. Micrometer-sized flakes synthesized by mechanical exfoliation from bulk crystals or by physical vapor deposition have shown a plethora of applications from low-threshold lasing at room temperature to high-performance photodetectors with large responsivity and faster response. However, large-area centimeter-sized growth of epitaxial thin films of PbI2 with well-controlled orientation has been challenging. Additionally, the nature of grain boundaries in epitaxial thin films of PbI2 remains elusive. Here, we use mica as a model substrate to unravel the growth mechanism of large-area epitaxial PbI2 thin films. The partial growth leading to uncoalesced domains reveals the existence of inversion domain boundaries in epitaxial PbI2 thin films on mica. Combining the experimental results with first-principles calculations, we also develop an understanding of the thermodynamic and kinetic factors that govern the growth mechanism, which paves the way for the synthesis of high-quality large-area PbI2 on other substrates and heterostructures of PbI2 on single-crystalline graphene. The ability to reproducibly synthesize high-quality large-area thin films with precise control over orientation and tunable optical properties could open up unique and hitherto unavailable opportunities for the use of PbI2 and its heterostructures in optoelectronics, twistronics, substrate engineering, and strain engineering.

3.
Nat Commun ; 12(1): 3608, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127668

RESUMO

Heterobilayers of transition metal dichalcogenides (TMDCs) can form a moiré superlattice with flat minibands, which enables strong electron interaction and leads to various fascinating correlated states. These heterobilayers also host interlayer excitons in a type-II band alignment, in which optically excited electrons and holes reside on different layers but remain bound by the Coulomb interaction. Here we explore the unique setting of interlayer excitons interacting with strongly correlated electrons, and we show that the photoluminescence (PL) of interlayer excitons sensitively signals the onset of various correlated insulating states as the band filling is varied. When the system is in one of such states, the PL of interlayer excitons is relatively amplified at increased optical excitation power due to reduced mobility, and the valley polarization of interlayer excitons is enhanced. The moiré superlattice of the TMDC heterobilayer presents an exciting platform to engineer interlayer excitons through the periodic correlated electron states.

4.
Nanotechnology ; 32(17): 17LT01, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620033

RESUMO

Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator (TI) is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic TI Sn-Bi1.1Sb0.9Te2S (Sn-BSTS). The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.

5.
Burns ; 47(4): 812-820, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32928613

RESUMO

Accurate classification of burn severities is of vital importance for proper burn treatments. A recent article reported that using the combination of Raman spectroscopy and optical coherence tomography (OCT) classifies different degrees of burns with an overall accuracy of 85% [1]. In this study, we demonstrate the feasibility of using Raman spectroscopy alone to classify burn severities on ex vivo porcine skin tissues. To create different levels of burns, four burn conditions were designed: (i) 200°F for 10s, (ii) 200°F for 30s, (iii) 450°F for 10s and (iv) 450°F for 30s. Raman spectra from 500-2000cm-1 were collected from samples of the four burn conditions as well as the unburnt condition. Classifications were performed using kernel support vector machine (KSVM) with features extracted from the spectra by principal component analysis (PCA), and partial least-square (PLS). Both techniques yielded an average accuracy of approximately 92%, which was independently evaluated by leave-one-out cross-validation (LOOCV). By comparison, PCA+KSVM provides higher accuracy in classifying severe burns, while PLS performs better in classifying mild burns. Variable importance in the projection (VIP) scores from the PLS models reveal that proteins and lipids, amide III, and amino acids are important indicators in separating unburnt or mild burns (200°F), while amide I has a more pronounced impact in separating severe burns (450°F).


Assuntos
Queimaduras/diagnóstico por imagem , Análise Espectral Raman/normas , Queimaduras/complicações , Humanos , Análise de Componente Principal , Índice de Gravidade de Doença , Análise Espectral Raman/métodos , Máquina de Vetores de Suporte/normas , Máquina de Vetores de Suporte/estatística & dados numéricos
6.
Nano Lett ; 20(10): 7635-7641, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902286

RESUMO

A strong Coulomb interaction could lead to a strongly bound exciton with high-order excited states, similar to the Rydberg atom. The interaction of giant Rydberg excitons can be engineered for a correlated ordered exciton array with a Rydberg blockade, which is promising for realizing quantum simulation. Monolayer transition metal dichalcogenides, with their greatly enhanced Coulomb interaction, are an ideal platform to host the Rydberg excitons in two dimensions. Here, we employ helicity-resolved magneto-photocurrent spectroscopy to identify Rydberg exciton states up to 11s in monolayer WSe2. Notably, the radius of the Rydberg exciton at 11s can be as large as 214 nm, orders of magnitude larger than the 1s exciton. The giant valley-polarized Rydberg exciton not only provides an exciting platform to study the strong exciton-exciton interaction and nonlinear exciton response but also allows the investigation of the different interplay between the Coulomb interaction and Landau quantization, tunable from a low- to high-magnetic-field limit.

7.
Nano Lett ; 20(7): 5292-5300, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32519865

RESUMO

Monolayer transition-metal dichalcogenides (TMDs) are the first truly two-dimensional (2D) semiconductor, providing an excellent platform to investigate light-matter interaction in the 2D limit. The inherently strong excitonic response in monolayer TMDs can be further enhanced by exploiting the temporal confinement of light in nanophotonic structures. Here, we demonstrate a 2D exciton-polariton system by strongly coupling atomically thin tungsten diselenide (WSe2) monolayer to a silicon nitride (SiN) metasurface. Via energy-momentum spectroscopy of the WSe2-metasurface system, we observed the characteristic anticrossing of the polariton dispersion both in the reflection and photoluminescence spectrum. A Rabi splitting of 18 meV was observed which matched well with our numerical simulation. Moreover, we showed that the Rabi splitting, the polariton dispersion, and the far-field emission pattern could be tailored with subwavelength-scale engineering of the optical meta-atoms. Our platform thus opens the door for the future development of novel, exotic exciton-polariton devices by advanced meta-optical engineering.

8.
Nat Commun ; 11(1): 3104, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561746

RESUMO

Strong many-body interaction in two-dimensional transitional metal dichalcogenides provides a unique platform to study the interplay between different quasiparticles, such as prominent phonon replica emission and modified valley-selection rules. A large out-of-plane magnetic field is expected to modify the exciton-phonon interactions by quantizing excitons into discrete Landau levels, which is largely unexplored. Here, we observe the Landau levels originating from phonon-exciton complexes and directly probe exciton-phonon interaction under a quantizing magnetic field. Phonon-exciton interaction lifts the inter-Landau-level transition selection rules for dark trions, manifested by a distinctively different Landau fan pattern compared to bright trions. This allows us to experimentally extract the effective mass of both holes and electrons. The onset of Landau quantization coincides with a significant increase of the valley-Zeeman shift, suggesting strong many-body effects on the phonon-exciton interaction. Our work demonstrates monolayer WSe2 as an intriguing playground to study phonon-exciton interactions and their interplay with charge, spin, and valley.

9.
Nat Commun ; 11(1): 2640, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457328

RESUMO

The heterostructure of monolayer transition metal dichalcogenides (TMDCs) provides a unique platform to manipulate exciton dynamics. The ultrafast carrier transfer across the van der Waals interface of the TMDC hetero-bilayer can efficiently separate electrons and holes in the intralayer excitons with a type II alignment, but it will funnel excitons into one layer with a type I alignment. In this work, we demonstrate the reversible switch from exciton dissociation to exciton funneling in a MoSe2/WS2 heterostructure, which manifests itself as the photoluminescence (PL) quenching to PL enhancement transition. This transition was realized through effectively controlling the quantum capacitance of both MoSe2 and WS2 layers with gating. PL excitation spectroscopy study unveils that PL enhancement arises from the blockage of the optically excited electron transfer from MoSe2 to WS2. Our work demonstrates electrical control of photoexcited carrier transfer across the van der Waals interface, the understanding of which promises applications in quantum optoelectronics.

10.
Nano Lett ; 20(1): 694-700, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31865705

RESUMO

Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly hindering the understanding of the Moiré potential modulation of the interlayer exciton. In this work, we unambiguously identify the spin-singlet and spin-triplet interlayer excitons in the WSe2/MoSe2 heterobilayer with a 60° twist angle through the gate- and magnetic field-dependent photoluminescence spectroscopy. Both the singlet and triplet interlayer excitons show giant valley-Zeeman splitting between the K and K' valleys, a result of the large Landé g-factor of the singlet interlayer exciton and triplet interlayer exciton, which are experimentally determined to be ∼10.7 and ∼15.2, respectively, which is in good agreement with theoretical expectation. The photoluminescence (PL) from the singlet and triplet interlayer excitons show opposite helicities, determined by the atomic registry. Helicity-resolved photoluminescence excitation (PLE) spectroscopy study shows that both singlet and triplet interlayer excitons are highly valley-polarized at the resonant excitation with the valley polarization of the singlet interlayer exciton approaching unity at ∼20 K. The highly valley-polarized singlet and triplet interlayer excitons with giant valley-Zeeman splitting inspire future applications in spintronics and valleytronics.

11.
Sci Rep ; 9(1): 19138, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844072

RESUMO

This study utilizes Raman spectroscopy to analyze the burn-induced collagen conformational changes in ex vivo porcine skin tissue. Raman spectra of wavenumbers 500-2000 cm-1 were measured for unburnt skin as well as four different burn conditions: (i) 200 °F for 10 s, (ii) 200 °F for the 30 s, (iii) 450 °F for 10 s and (iv) 450 °F for 30 s. The overall spectra reveal that protein and amino acids-related bands have manifested structural changes including the destruction of protein-related functional groups, and transformation from α-helical to disordered structures which are correlated with increasing burn severity. The deconvolution of the amide I region (1580-1720 cm-1) and the analysis of the sub-bands reveal a change of the secondary structure of the collagen from the α-like helix dominated to the ß-aggregate dominated one. Such conformational changes may explain the softening of mechanical response in burnt tissues reported in the literature.


Assuntos
Queimaduras/metabolismo , Colágeno/química , Pele/patologia , Análise Espectral Raman , Amidas/química , Animais , Estrutura Secundária de Proteína , Suínos
12.
ACS Nano ; 13(12): 14107-14113, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31765125

RESUMO

Inversion symmetry breaking and 3-fold rotation symmetry grant the valley degree of freedom to the robust exciton in monolayer transition-metal dichalcogenides, which can be exploited for valleytronics applications. However, the short lifetime of the exciton significantly constrains the possible applications. In contrast, the dark exciton could be long-lived but does not necessarily possess the valley degree of freedom. In this work, we report the identification of the momentum-dark, intervalley exciton in monolayer WSe2 through low-temperature magneto-photoluminescence spectra. Interestingly, the intervalley exciton is brightened through the emission of a chiral phonon at the corners of the Brillouin zone (K point), and the pseudoangular momentum of the phonon is transferred to the emitted photon to preserve the valley information. The chiral phonon energy is determined to be ∼23 meV, based on the experimentally extracted exchange interaction (∼7 meV), in excellent agreement with the theoretical expectation of 24.6 meV. The long-lived intervalley exciton with valley degree of freedom adds an exciting quasiparticle for valleytronics, and the coupling between the chiral phonon and intervalley exciton furnishes a venue for valley spin manipulation.

13.
Nat Commun ; 10(1): 4649, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604933

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Nano Lett ; 19(10): 6886-6893, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31487988

RESUMO

Spin-forbidden intravalley dark excitons in tungsten-based transition-metal dichalcogenides (TMDCs), because of their unique spin texture and long lifetime, have attracted intense research interest. Here, we show that we can control the dark exciton electrostatically by dressing it with one free electron or free hole, forming the dark trions. The existence of the dark trions is suggested by the unique magneto-photoluminescence spectroscopy pattern of the boron nitride (BN)-encapsulated monolayer WSe2 device at low temperature. The unambiguous evidence of the dark trions is further obtained by directly resolving the radiation pattern of the dark trions through back focal plane imaging. The dark trions possess a binding energy of ∼15 meV, and they inherit the long lifetime and large g-factor from the dark exciton. Interestingly, under the out-of-plane magnetic field, dressing the dark exciton with one free electron or hole results in distinctively different valley polarization of the emitted photon, as a result of the different intervalley scattering mechanism for the electron and hole. Finally, the lifetime of the positive dark trion can be further tuned from ∼50 ps to ∼215 ps by controlling the gate voltage. The gate-tunable dark trions usher in new opportunities for excitonic optoelectronics and valleytronics.

15.
Nat Commun ; 10(1): 3513, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383862

RESUMO

High performance terahertz imaging devices have drawn wide attention due to their significant application in healthcare, security of food and medicine, and nondestructive inspection, as well as national security applications. Here we demonstrate a broadband terahertz photon-type up-conversion imaging device, operating around the liquid helium temperature, based on the gallium arsenide homojunction interfacial workfunction internal photoemission (HIWIP)-detector-LED up-converter and silicon CCD. Such an imaging device achieves broadband response in 4.2-20 THz and can absorb the normal incident light. The peak responsivity is 0.5 AW-1. The light emitting diode leads to a 72.5% external quantum efficiency improvement compared with the one widely used in conventional up-conversion devices. A peak up-conversion efficiency of 1.14 × 10-2 is realized and the optimal noise equivalent power is 29.1 pWHz-1/2. The up-conversion imaging for a 1000 K blackbody pin-hole is demonstrated. This work provides a different imaging scheme in the terahertz band.

16.
Nat Commun ; 10(1): 2469, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171789

RESUMO

Tungsten-based monolayer transition metal dichalcogenides host a long-lived "dark" exciton, an electron-hole pair in a spin-triplet configuration. The long lifetime and unique spin properties of the dark exciton provide exciting opportunities to explore light-matter interactions beyond electric dipole transitions. Here we demonstrate that the coupling of the dark exciton and an optically silent chiral phonon enables the intrinsic photoluminescence of the dark-exciton replica in monolayer WSe2. Gate and magnetic-field dependent PL measurements unveil a circularly-polarized replica peak located below the dark exciton by 21.6 meV, equal to E″ phonon energy from Se vibrations. First-principles calculations show that the exciton-phonon interaction selectively couples the spin-forbidden dark exciton to the intravalley spin-allowed bright exciton, permitting the simultaneous emission of a chiral phonon and a circularly-polarized photon. Our discovery and understanding of the phonon replica reveals a chirality dictated emission channel of the phonons and photons, unveiling a new route of manipulating valley-spin.

17.
Nat Commun ; 10(1): 1764, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992432

RESUMO

Unlike the vast majority of transition metal dichalcogenides which are semiconductors, vanadium disulfide is metallic and conductive. This makes it particularly promising as an electrode material in lithium-ion batteries. However, vanadium disulfide exhibits poor stability due to large Peierls distortion during cycling. Here we report that vanadium disulfide flakes can be rendered stable in the electrochemical environment of a lithium-ion battery by conformally coating them with a ~2.5 nm thick titanium disulfide layer. Density functional theory calculations indicate that the titanium disulfide coating is far less susceptible to Peierls distortion during the lithiation-delithiation process, enabling it to stabilize the underlying vanadium disulfide material. The titanium disulfide coated vanadium disulfide cathode exhibits an operating voltage of ~2 V, high specific capacity (~180 mAh g-1 @200 mA g-1 current density) and rate capability (~70 mAh g-1 @1000 mA g-1), while achieving capacity retention close to 100% after 400 charge-discharge steps.

18.
Nano Lett ; 19(1): 299-307, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30556398

RESUMO

Monolayer transition metal dichalcogenides (TMDs) possess superior optical properties, including the valley degree of freedom that can be accessed through the excitation light of certain helicity. Although WS2 and WSe2 are known for their excellent valley polarization due to the strong spin-orbit coupling, the optical bandgap is limited by the ability to choose from only these two materials. This limitation can be overcome through the monolayer alloy semiconductor, WS2 xSe2(1- x), which promises an atomically thin semiconductor with tunable bandgap. In this work, we show that the high-quality BN encapsulated monolayer WS0.6Se1.4 inherits the superior optical properties of tungsten-based TMDs, including a trion splitting of ∼6 meV and valley polarization as high as ∼60%. In particular, we demonstrate for the first time the emerging and gate-tunable interlayer electron-phonon coupling in the BN/WS0.6Se1.4/BN van der Waals heterostructure, which renders the otherwise optically silent Raman modes visible. In addition, the emerging Raman signals can be drastically enhanced by the resonant coupling to the 2s state of the monolayer WS0.6Se1.4 A exciton. The BN/WS2 xSe2(1- x)/BN van der Waals heterostructure with a tunable bandgap thus provides an exciting platform for exploring the valley degree of freedom and emerging excitonic physics in two-dimension.

19.
Sci Rep ; 8(1): 16482, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405168

RESUMO

Organic-inorganic perovskite as a promising candidate for solar energy harvesting has attracted immense interest for its low-cost preparation and extremely high quantum efficiency. However, the fundamental understanding of the photophysics in perovskite remains elusive. In this work, we have revealed two distinct states in MAPbI3 thin films at low temperature through time-resolved photoluminescence spectroscopy (TRPL). In particular, we observed a photo-induced carrier injection from the high energy (HE) state to the low energy (LE) state which has a longer lifetime. The strong interaction between the two states, evidenced by the injection kinetics, can be sensitively controlled through the excitation power. Understanding of the interacting two-states not only sheds light on the long PL lifetime in perovskite but also helps to understand the different behavior of perovskite in response to different excitation power. Further efforts in modifying the low energy state could significantly improve the quantum efficiency and lead to novel application in optoelectronics based on perovskite.

20.
Nat Commun ; 9(1): 3719, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213927

RESUMO

Strong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions, and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN-encapsulated single-layer WSe2. The biexciton state only exists in charge-neutral WSe2, which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe2, one free electron binds to a biexciton and forms the trion-exciton complex. Improved understanding of the biexciton and trion-exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...