Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215602

RESUMO

Drought stress is one of the most limiting factors of maize productivity and can lead to a sharp reduction in the total biomass when it occurs at the seedling stage. Improving drought tolerance at the seedling stage is of great importance for maize breeding. The AP2/ERF transcription factor family plays a critical role in plant response to abiotic stresses. Here, we used a preliminary previously-generated ranscriptomic dataset to identify a highly drought-stress-responsive AP2 gene, i.e., ZmEREB24. Compared to the wild type, the overexpression of ZmEREB24 in maize significantly promotes drought tolerance of transgenic plants at the seedling stage. CRISPR/Cas9-based ZmEREB24-knockout mutants showed a drought-sensitive phenotype. RNA-seq analysis and EMSA assay revealed AATGG.CT and GTG.T.GCC motifs as the main binding sites of ZmEREB24 to the promoters of downstream target genes. DAP-seq identified four novel target genes involved in proline and sugar metabolism and hormone signal transduction of ZmEREB24. Our data indicate that ZmEREB24 plays important biological functions in regulating drought tolerance by binding to the promoters of drought stress genes and modulating their expression. The results further suggest a role of ZmEREB24 in regulating drought adaptation in maize, indicating its potential importance for employing molecular breeding in the development of high-yield drought-tolerant maize cultivars.


Assuntos
Resistência à Seca , Plântula , Plântula/metabolismo , Zea mays/metabolismo , Melhoramento Vegetal , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Stress Biol ; 3(1): 47, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971599

RESUMO

MYB-related genes, a subclass of MYB transcription factor family, have been documented to play important roles in biological processes such as secondary metabolism and stress responses that affect plant growth and development. However, the regulatory roles of MYB-related genes in drought stress response remain unclear in maize. In this study, we discovered that a 1R-MYB gene, ZmRL6, encodes a 96-amino acid protein and is highly drought-inducible. We also found that it is conserved in both barley (Hordeum vulgare L.) and Aegilops tauschii. Furthermore, we observed that overexpression of ZmRL6 can enhance drought tolerance while knock-out of ZmRL6 by CRISPR-Cas9 results in drought hypersensitivity. DAP-seq analyses additionally revealed the ZmRL6 target genes mainly contain ACCGTT, TTACCAAAC and AGCCCGAG motifs in their promoters. By combining RNA-seq and DAP-seq results together, we subsequently identified eight novel target genes of ZmRL6 that are involved in maize's hormone signal transduction, sugar metabolism, lignin synthesis, and redox signaling/oxidative stress. Collectively, our data provided insights into the roles of ZmRL6 in maize's drought response.

3.
J Environ Manage ; 348: 119469, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924695

RESUMO

Inefficient irrigation practices have hindered crop yields, wasted irrigation water resources, and posed threats to groundwater levels and agricultural sustainability. This study evaluated different irrigation strategies for a winter wheat-summer maize rotation system to identify sustainable practices for maintaining yields while reducing groundwater depletion. A two-year field experiment was conducted, implementing three optimized irrigation strategies during the winter wheat season: I-4 (irrigated until the soil water content (SWC) of the 40 cm soil layer reaches 60% of field capacity (FC), I-6 (irrigated until the SWC of the 60 cm soil layer reaches 80% FC), and a rainfed (R) as control. Irrigation was repeated when the SWC dropped to the specified level. No irrigation level was used during the summer maize season, except for irrigation after sowing that ensuring the normal emergence of maize. WHCNS (Water Heat Carbon Nitrogen Simulator) model was developed to simulate soil water dynamics, field water consumption, and yield of both crops. The result indicated WHCNS model accurately simulated water dynamics, consumption, and grain yield. Compared to R treatment, the I-4 treatment significantly increased annual crop yield by 19.83%-28.65% (p < 0.05), while maintaining similar crop water productivity. Furthermore, the I-4 treatment achieved comparable yields to the I-6 treatment, but with a 33.91% reduction in irrigation water use, resulting in a 33.46% increase in crop water productivity and a 90.53% increase in irrigation water productivity. From a sustainable perspective, the I-4 treatment effectively reduced field water losses and maintained relatively high soil water storage, particularly in the topsoil, which was beneficial for the early growth of subsequent crops. The R treatment greatly contributed to groundwater recharge when precipitation was sufficient, while it led to severe yield losses. Overall, under the condition of annual rotation planting systems, the I-4 treatment sustainably maintained yields with less irrigation, decreasing groundwater consumption. This approach could conserve regional water resources and groundwater table while upholding agricultural productivity and achieving system sustainable water use.


Assuntos
Água Subterrânea , Zea mays , Triticum , Estações do Ano , Solo , Produtos Agrícolas , Água , Irrigação Agrícola/métodos
4.
Sci Total Environ ; 901: 165906, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37532040

RESUMO

Adjusting sowing dates and sowing rates is a key adaptation strategy for adapting to future climate change, and maintaining wheat production in the North China Plain (NCP). However, it is still unclear whether the current sowing date and sowing rate can adapt to future climate change, and how to adjust the sowing date and sowing rate to compensate for the adverse effects of climate change on wheat yields. This study predicts the adaptability of agricultural management practices like sowing dates and sowing rates, to future climate change in three wheat regions by referring to four global climate models (GCMs) and AquaCrop model. Population structure and yield were maximized for sowing dates from Oct.11-20 and sowing rates of 10-13 kg/667 m2 (or 13-16 kg/667 m2) in 2016-2021. Three wheat regions were expected to show a warming trend, while the total precipitation has large spatial fluctuations under both representative concentration pathways (rcp) scenarios in the 2022-2100. AquaCrop model could simulate yield with a good precision (RMSE≤1043.7 kg/ha). Compared to the average yield of the baseline period (2016-2021), in the 2022-2100, the average predicted wheat yields of three wheat regions simulated based on the current optimal sowing date and sowing rate decreased by 5.45 % âˆ¼ 11.05 % (9.35 % âˆ¼ 16.84 %) and 2.57 % âˆ¼ 10.95 % (6.97 % âˆ¼ 12.75 %) under the rcp4.5 (rcp8.5), respectively. Average wheat yield losses were effectively compensated when the combinations of Oct.15 and 14 kg/667 m2 for the dryland wheat, Oct.21 and 14 kg/667 m2 for the irrigated wheat, and Oct.21 and 13 kg/667 m2 for the high-yield-rainfed wheat were applied under both rcp scenarios, respectively, with predicted yield losses of -4.17 %, -3.50 %, and - 3.25 %. Thus, adjusting sowing dates and sowing rates are viable options to effectively address the adverse effects of future global climate change, thereby guaranteeing food security in the NCP.

5.
Sci Total Environ ; 897: 165430, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437631

RESUMO

The winter wheat-summer maize rotation system is common in the Huang-Huai-Hai Plain due to its consistent yield, however, it may cause soil quality degradation and increased risk of greenhouse gas emissions. To evaluate the effects of different planting patterns on soil organic carbon (SOC) and total nitrogen (TN) sequestration, as well as aggregate and C-N distribution, a three-year field experiment that included three annual double-cropping rotation patterns: winter wheat-maize (W-M), winter wheat-soybean (W-S), and winter wheat-sweet potato (W-SP) was conducted from 2020 to 2022, with W-M as the control. Our research revealed significant differences in soil carbon sequestration rates among the various planting systems. Specifically, the SOC stock in the W-S system was 12.21 % to 24.51 % higher than that of the W-M system and 10.28 % to 35.73 % higher than that of the W-SP system. While TN stock demonstrated an increase of 9.85 % to 37.39 % compared to the W-M system and 8.14 % to 67.43 % compared to the W-SP system. Moreover, SOC and TN sequestration were largely related to soil aggregates, with macroaggregates being the primary component in both W-S and W-M planting patterns, while microaggregates were more common in W-SP patterns. The accumulation of SOC and TN occurred mainly in macroaggregates, leading to a significant increase in C and N content in soil macroaggregates under the W-S planting pattern. The structural equation model suggested that the TN stock had both direct and indirect effects on SOC sequestration, with a total impact coefficient of 0.872. Our three-year field results indicate that the W-S model is advantageous in enhancing soil C and N sequestration capacity and had great potential in reducing greenhouse gas emissions in farmland.

6.
J Plant Physiol ; 280: 153883, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470036

RESUMO

Maize is an important feed and industrial cereal crop and is crucial for global food security. The development of drought-tolerant genotypes is a major aim of breeding programs to fight water scarcity and maintain sustainable maize production. Late embryogenesis abundant (LEA) proteins are a family of proteins related to osmotic regulation that widely exist in organisms. Here, we implemented a previously generated maize transcriptomic dataset to identify a drought-responsive gene designated ZmNHL1. Bioinformatics analysis of ZmNHL1 showed that the protein encoded by ZmNHL1 belongs to the LEA-2 protein family. Tissue specific expression analysis showed that ZmNHL1 is relatively abundant in stems and leaves, highly expressed in tassels and only slightly expressed in roots, pollens and ears. Moreover, the activity of SOD and POD of plants from three 35S::ZmNHL1 transgenic lines under either the induced drought stress conditions (by 20% PEG6000) or the natural water deficit treatment (by water withholding) were higher than that of the WT plants, while the electrolyte leakage of the 35S::ZmNHL1 transgenic plants was lower than that of the WT plants under both drought treatments. Our data further revealed that ZmNHL1 promotes maize tolerance to drought stress in 35S::ZmNHL1 transgenic plants by improving ROS scavenging and maintaining the cell membrane permeability. Overall, our data revealed that ZmNHL1 promotes maize tolerance to drought stress and contributes to provide elite germplasm resources for maize drought tolerance breeding programs.


Assuntos
Proteínas de Plantas , Zea mays , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Água/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Desenvolvimento Embrionário , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
7.
Plant Sci ; 314: 111127, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895535

RESUMO

Serine/threonine protein phosphatases play essential roles in plants. PP2C has diverse functions related to development and stress response, while little is known about the functions of PP2C genes with respect to a variety of stresses in maize. In the present study, three ZmPP2C genes, ZmPP2C55, ZmPP2C28, and ZmPP2C71, were identified. Subcellular localization demonstrated that ZmPP2C28 and ZmPP2C71 were nuclear proteins, and ZmPP2C55 was located in both the nucleus and cytoplasm. qRT-PCR analysis showed that ZmPP2C55, ZmPP2C28, and ZmPP2C71 were expressed in roots, leaves and stems, and the three genes were responsive to drought, salt, high-temperature stress and exogenous ABA treatment. To explore the function of the ZmPP2C gene, ZmPP2C55-overexpressing transgenic lines were generated. The transgenic plants exhibited higher RWC, proline content, POD and SOD activities, GSH content and GSH/GSSG ratio and lower MDA content, electrolyte leakage and GSSG content compared with WT plants under natural stress treatment when seedlings were at the three-leaf. Our results illustrated that the overexpression of ZmPP2C55 positively enhanced tolerance to drought stress.


Assuntos
Adaptação Fisiológica/genética , Desidratação/fisiopatologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Zea mays/genética , Zea mays/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
8.
Math Biosci Eng ; 18(6): 9651-9668, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34814361

RESUMO

Conventional farming practices not only constrained food security due to low yield but also threatened the ecosystem by causing groundwater decline and groundwater nitrate contamination. A two×¹ear field experiment was conducted at the research station of North China University of Water Resources and Electric Power, Zhengzhou. The WHCNS model was used to simulate grain yield, water and nitrogen fertilizer use efficiencies (WUE and FNUEs) of spring maize under border irrigation method, drip irrigation, and rainfed conditions. In addition, a scenario analysis was also performed on different dry and rainy seasons to assess the long-term impact of rainfall variability on spring maize from 2000-2017. The result showed that the model precisely simulated soil water content, N concentration, crop biomass accumulation, and grain yield. The maximum and minimum range of relative root mean squire error (RRMSE) values were 0.5-36.0% for soil water content, 14.0-38.0% for soil nitrate concentrations, 19.0-24.0% for crop biomass and 1.0-2.0% for grain yield, respectively under three irrigation methods. Both the index of agreement (IA) and Pearson correlation coefficient (r) values were close 1. We found the lowest grain yield from the rainfed maize, whereas the drip irrigation method increased grain yield by 14% at 40% water saving than border irrigation method for the two years with the 11% lower evaporation and maintained transpiration rate. Moreover, the drip irrigated maize had a negligible amount of drainage and runoff, which subsequently improved WUE by 27% in the first growing season and 16% in the second rotation than border irrigation. The drip irrigated maize also showed 24% higher FNUE. The reason of lower WUE and FNUEs under the border irrigation method was increased drainage amounts and N leaching rates. Furthermore, scenario analysis indicated that the dry season could result in a 30.8% yield decline as compared to rainy season.


Assuntos
Nitrogênio , Zea mays , Irrigação Agrícola , Biomassa , China , Ecossistema , Estações do Ano , Água
9.
Mol Genet Genomics ; 296(6): 1203-1219, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34601650

RESUMO

Drought severely affects the growth and development of maize, but there is a certain degree of compensation effect after rewatering. This study intends to elaborate the response mechanism of maize at the physiological and molecular level as well as excavating potential genes with strong drought resistance and recovery ability. Physiological indexes analysis demonstrated that stomata conductance, transpiration rate, photosynthesis rate, antioxidant enzymes, and proline levels in maize were significantly altered in response to drought for 60 and 96 h and rewatering for 3 days. At 60 h, 96 h, and R3d, we detected 3095, 1941, and 5966 differentially expressed genes (DEGs) and 221, 226, and 215 differentially expressed miRNAs. Weighted correlation network analysis (WGCNA) showed that DEGs responded to maize drought and rewatering through participating in photosynthesis, proline metabolism, ABA signaling, and oxidative stress. Joint analysis of DEGs, miRNA, and target genes showed that zma-miR529, miR5072, zma-miR167e, zma-miR167f, zma-miR167j, miR397, and miR6214 were involved to regulate SBPs, MYBs, ARFs, laccases, and antioxidant enzymes, respectively. Hundreds of differentially expressed DNA methylation-related 24-nt siRNA clusters overlap with DEGs, indicating that DNA methylation is involved in responses under drought stress. These results provide new insights into the molecular mechanisms of drought tolerance, and may identify new targets for breeding drought-tolerant maize lines.


Assuntos
Adaptação Fisiológica/fisiologia , Secas , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Zea mays/metabolismo , Antioxidantes/metabolismo , Metilação de DNA/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Fotossíntese , Melhoramento Vegetal , Folhas de Planta/fisiologia , Transcriptoma/genética , Zea mays/genética
10.
Physiol Mol Biol Plants ; 27(6): 1295-1309, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34177148

RESUMO

MYB transcription factors play pivotal roles in hormone conduction signaling and abiotic stress response. In this study, 54 differentially expressed ZmMYB genes were identified and comprehensive analyses were conducted including gene's structure, chromosomal localization, phylogenetic tree, motif prediction, cis-elements and expression patterns. The results showed that 54 genes were unevenly distributed on 10 chromosomes and classified into eleven main subgroups by phylogenetic analysis, supported by motif and exon/intron analyses. The mainly stress-related cis-elements were ABRE, ARE, MBS and DRE-core. In addition, 8 core ZmMYB genes were identified by co-expression network. qRT-PCR results showed that the 8 ZmMYB genes exhibited different expression levels under different abiotic stresses, indicating that they were responsive to various abiotic stress. These results will provide insight for further functional investigation of ZmMYB genes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01013-2.

11.
Front Plant Sci ; 12: 629903, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868332

RESUMO

Analyzing the transcriptome of maize leaves under drought stress and rewatering conditions revealed that transcription factors were involved in this process, among which ZmbZIP33 of the ABSCISIC ACID-INSENSITIVE 5-like protein 5 family was induced to significantly up-regulated. The functional mechanism of ZmbZIP33 in Abscisic acd (ABA) signaling pathway and its response to drought stress and rewatering has not been studied yet. The present study found that ZmbZIP33 contains a DNA-binding and dimerization domain, has transcriptional activation activity, and is highly homologous to SbABI1,SitbZIP68 and OsABA1. The expression of ZmbZIP33 is strongly up-regulated by drought, high salt, high temperature, and ABA treatments. Overexpression of ZmbZIP33 remarkably increased chlorophyll content and root length after drought stress and rewatering, and, moreover, cause an accumulation of ABA content, thereby improving drought resistance and recovery ability in Arabidopsis. However, silencing the expression of ZmbZIP33 (BMV-ZmbZIP33) remarkably decreased chlorophyll content, ABA content, superoxide dismutase and peroxidase activities, and increased stomatal opening and water loss rate compared with BMV (control). It showed that silencing ZmbZIP33 lead to reduced drought resistance and recovery ability of maize. ABA sensitivity analysis found that 0.5 and 1 µmol/L treatments severely inhibited the root development of overexpression ZmbZIP33 transgenic Arabidopsis. However, the root growth of BMV was greatly inhibited for 1 and 5µmol/L ABA treatments, but not for BMV-ZmbZIP33. Subcellular localization, yeast two-hybrid and BIFC further confirmed that the core components of ABA signaling pathways ZmPYL10 and ZmPP2C7 interacted in nucleus, ZmPP2C7 and ZmSRK2E as well as ZmSRK2E and ZmbZIP33 interacted in the plasma membrane. We also found that expression levels of ZmPYL10 and ZmSRK2E in the BMV-ZmbZIP33 mutant were lower than those of BMV, while ZmPP2C7 was the opposite under drought stress and rewatering. However, expression of ZmPYL10 and ZmSRK2E in normal maize leaves were significantly up-regulated by 3-4 folds after drought and ABA treatments for 24 h, while ZmPP2C7 was down-regulated. The NCED and ZEP encoding key enzymes in ABA biosynthesis are up-regulated in overexpression ZmbZIP33 transgenic line under drought stress and rewatering conditions, but down-regulated in BMV-ZmbZIP33 mutants. Together, these findings demonstrate that ZmbZIP33 played roles in ABA biosynthesis and regulation of drought response and rewatering in Arabidopsis and maize thought an ABA-dependent signaling pathway.

12.
J Environ Manage ; 288: 112391, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823456

RESUMO

The straw returning technique is one of the important measures for soil carbon sequestration and soil organic carbon (SOC) promotion in the world. However, the patterns of straw utilization in China with various methods among regions, the effect and variability of straw returning on SOC in different areas of China remain uncertain. We conducted a meta-analysis of 446 sets of data from 95 studies in China field to explore how the environmental factors and field management affect SOC after straw returning. The results showed that straw returning to the field significantly increase SOC content by an average of 13.97% (n = 446). The SOC increased effects are more obvious under areas with mean annual precipitation (MAP) > 500 mm, temperature (MAT) > 10 °C, loam or sandy soil, or the initial SOC content <10 g kg-1. The effect of straw returning on SOC also depends on planting systems, ranging from 5.43% of rice continuous cropping to 17.05% of the maize-wheat ration. In the rotation system, the SOC increasing effect under paddy-wheat rotation (15.79% in rice and 14.87% in wheat season) was more significant than under wheat-maize rotation (17.05% in wheat and 11.81% in maize season). The proper duration of straw returning is 6-9 years, while it will decrease SOC by 17.06%-20.05% more than 10 years. Moreover, the effects of straw returning under the conditions with deep tillage, the amount of straw more than 9000 kg ha-1, or combined pure N with 180-240 kg N ha-1 were better than other methods.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , China , Fazendas , Zea mays
13.
Front Plant Sci ; 11: 508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477381

RESUMO

Understanding the temporal and spatial patterns of soil water extraction and their impacts on growth response of winter wheat to deficit subsurface drip irrigation (SDI) conditions is critical for managing water scarcity and stabilizing yield. A field experiment was conducted from 2016 to 2018 involving five SDI amounts: 0.25, 0.4, 0.6, 0.8, and 1.0 ETc, representing 25, 40, 60, 80, and 100% of crop evapotranspiration (ETc), respectively. The results showed that the 0.6 ETc treatment significantly increased soil water extraction from 40-80 and 80-140-cm from jointing to maturity as compared to the 1.0 ETc treatment. Whereas the 0.8 ETc treatment significantly increased soil water extraction from 80-140-cm deep soil from flowering to maturity in the first growing season. The crop was most water-stressed under the 0.25 and 0.4 ETc treatments, thus extracted more soil water from 0-140-cm soil profile. However, both treatments exhibited minimum plant tillers, lowest leaf water content, leaf area index (LAI), photosynthetic rate (P n ), and transpiration rate (T r ) as well as grain yield. All these parameters, except for leaf water content, P n after the flowering stage, and grain productivity, were also reduced in the 0.6 ETc treatment than the 1.0 ETc treatment. The differences between the 0.8 and 1.0 ETc treatments were minor in terms of plant height, LAI, spike number, P n and T r , but infertile tillers were fewer in the 0.8 ETc treatment. We obtained high yield from the 0.8 ETc treatment, and the 0.6ETc treatment resulted in the highest harvest index with improved WUE than other treatments. Integrating deficit irrigation into SDI can save water in winter wheat production in water-limited regions, which can not only enhance soil water extraction from deep soil layers, but also sustained yield by stimulating crop growth. Therefore, a deficit SDI system would be used to conserve water in water-limited regions.

14.
Physiol Mol Biol Plants ; 26(4): 705-717, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255934

RESUMO

The plant-specific NAC transcription factor (TFs) plays crucial role in plant growth as well as in stress resistance. In the present study, 87 Zea mays NAC TFs were obtained from the transcriptome analysis using drought-resistant maize inbred line Y882 as experimental material under PEG stress and rewatering treatment. Comprehensive analyses were conducted including genes structure, chromosomal localization, phylogenetic tree and motif prediction, cis-elements and expression patterns. The results showed that the 87 ZmNAC genes distributed on 10 chromosomes and were categorized into 15 groups based on their conserved gene structure and motifs. Phylogenetic tree analysis was also constructed referencing to the counterparts of Arabidopsis and rice, and the stress-related cis-elements in the promoter region were also analyzed. 87 ZmNAC genes exhibited different expression levels at 3 treatment points, indicating different response to drought stress. This genome-wide analysis of 87 ZmNAC genes will provide basis for further gene function detection.

15.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948071

RESUMO

OSCAs are hyperosmolality-gated calcium-permeable channel proteins. In this study, two co-expression modules, which are strongly associated with maize proline content, were screened by weighted correlation network analysis, including three ZmOSCA family members. Phylogenetic and protein domain analyses revealed that 12 ZmOSCA members were classified into four classes, which all contained DUF221 domain. The promoter region contained multiple core elements responsive to abiotic stresses and hormones. Colinear analysis revealed that ZmOSCAs had diversified prior to maize divergence. Most ZmOSCAs responded positively to ABA, PEG, and NaCl treatments. ZmOSCA2.3 and ZmOSCA2.4 were up-regulated by more than 200-fold under the three stresses, and showed significant positive correlations with proline content. Yeast two-hybrid and bimolecular fluorescence complementation indicated that ZmOSCA2.3 and ZmOSCA2.4 proteins interacted with ZmEREB198. Over-expression of ZmOSCA2.4 in Arabidopsis remarkably improved drought resistance. Moreover, over-expression of ZmOSCA2.4 enhanced the expression of drought tolerance-associated genes and reduced the expression of senescence-associated genes. We also found that perhaps ZmOSCA2.4 was regulated by miR5054.The results provide a high-quality molecular resource for selecting resistant breeding, and lay a foundation for elucidating regulatory mechanism of ZmOSCA under abiotic stresses.


Assuntos
Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Senescência Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Canais de Cálcio/genética , Senescência Celular/efeitos dos fármacos , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , MicroRNAs/metabolismo , Pressão Osmótica , Filogenia , Plantas Geneticamente Modificadas/genética , Prolina/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Tolerância ao Sal/genética , Cloreto de Sódio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
16.
Int J Mol Sci ; 20(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443483

RESUMO

The basic leucine zipper (bZIP) family of transcription factors (TFs) regulate diverse phenomena during plant growth and development and are involved in stress responses and hormone signaling. However, only a few bZIPs have been functionally characterized. In this paper, 54 maize bZIP genes were screened from previously published drought and rewatering transcriptomes. These genes were divided into nine groups in a phylogenetic analysis, supported by motif and intron/exon analyses. The 54 genes were unevenly distributed on 10 chromosomes and contained 18 segmental duplications, suggesting that segmental duplication events have contributed to the expansion of the maize bZIP family. Spatio-temporal expression analyses showed that bZIP genes are widely expressed during maize development. We identified 10 core ZmbZIPs involved in protein transport, transcriptional regulation, and cellular metabolism by principal component analysis, gene co-expression network analysis, and Gene Ontology enrichment analysis. In addition, 15 potential stress-responsive ZmbZIPs were identified by expression analyses. Localization analyses showed that ZmbZIP17, -33, -42, and -45 are nuclear proteins. These results provide the basis for future functional genomic studies on bZIP TFs in maize and identify candidate genes with potential applications in breeding/genetic engineering for increased stress resistance. These data represent a high-quality molecular resource for selecting resistant breeding materials.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Zíper de Leucina/genética , Estresse Fisiológico/genética , Zea mays/fisiologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Biologia Computacional/métodos , Sequência Conservada , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Genômica/métodos , Família Multigênica , Regiões Promotoras Genéticas , Transcriptoma , Zea mays/classificação
17.
Behav Pharmacol ; 26(5): 436-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25974189

RESUMO

To investigate the applicability of astragaloside IV (AG) for the treatment of refractory neuropathic pain, we systemically evaluated the antinociceptive activity of AG in the animal model of chronic constriction injury. We studied behaviors, electrophysiology, and biochemistry from day 2 to day 23 after the surgery. We found that when administered intraperitoneally at the dose of 60 mg/kg, AG caused significant inhibition of allodynia and hyperalgesia induced by mechanic and thermal stimuli as well as downregulation of the expressions of a series of proteins involved in mediating neuropathic pain in the dorsal root ganglia, such as P2X purinoceptor 3, glial cell-derived neurotrophic factor, glial cell-derived neurotrophic factor family receptor α1, and transient receptor potential cation channel subtypes A1 and V1. Further investigation showed that AG restored the nerve conduction velocity and the histological structure of the damaged sciatic nerve on day 23 after the surgery. Moreover, results from immunoelectron microscope showed that glial cell-derived neurotrophic factor family receptor α1 induced by AG could form a circular band in the myelin debris between the injured axons and Schwann cells, contributing toward restoration of the damaged nerve. In conclusion, in our animal model, AG effectively inhibited the neuropathic pain induced by chronic constriction injury.


Assuntos
Analgésicos/farmacologia , Dor Crônica/tratamento farmacológico , Constrição Patológica/tratamento farmacológico , Neuralgia/tratamento farmacológico , Saponinas/farmacologia , Nervo Isquiático/lesões , Triterpenos/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Dor Crônica/etiologia , Dor Crônica/patologia , Dor Crônica/fisiopatologia , Constrição Patológica/complicações , Constrição Patológica/patologia , Constrição Patológica/fisiopatologia , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiopatologia , Gânglios Espinais/ultraestrutura , Temperatura Alta , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Necrose/tratamento farmacológico , Necrose/etiologia , Necrose/patologia , Necrose/fisiopatologia , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Neuralgia/etiologia , Neuralgia/patologia , Neuralgia/fisiopatologia , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura , Tato
18.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3315-21, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26915185

RESUMO

A pot culture experiment was conducted to study the effects of postponing nitrogen (N) application on photosynthetic characteristics and grain yield of winter wheat subjected to water stress after heading stage. Equal in the total N rate in winter wheat growth season, N application was split before sowing, and/or at jointing and /or at anthesis at the ratio of 10:0:0 (N1), 6:4:0 (N2) and 4:3:3 (N3), combined with unfavorable water condition (either waterlogged or drought) with the sufficient water condition as control. The results showed that, under each of the water condition, both N2 and N3 treatments significantly improved the leaf photosynthetic rate and the SPAD value of flag leaf compared with N1 treatment during grain filling stage, and also the crop ear number, grain number per spike and above-ground biomass were increased. Although postponing nitrogen application increased water consumption, both grain yield and water use efficiency were increased. Compared with sufficient water supply, drought stress and waterlogging stress significantly reduced the photosynthetic rate of flag leaves at anthesis and grain filling stages, ear number, 1000-grain mass and yield under all of the N application patterns. The decline of photosynthetic rate under either drought stress or waterlogging stress was much less in N2 and N3 than in N1 treatments, just the same as the grain yield. The results indicated that postponing nitrogen application could regulate winter wheat yield as well as its components to alleviate the damages, caused by unfavorable water stress by increasing flag leaf SPAD and maintaining flag leaf photosynthetic rate after anthesis, and promoting above-ground dry matter accumulation.


Assuntos
Fertilizantes , Nitrogênio/química , Fotossíntese , Triticum/fisiologia , Agricultura/métodos , Desidratação , Secas , Água
19.
Pak J Pharm Sci ; 27(1): 91-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24374458

RESUMO

In folklore medicine, Acorus calamus has been used as a wound-healing agent for thousands of years; however, there have been few scientific reports on this activity so far. Now, we explored deeply the wound-healing effect of aqueous extracts from the fresh roots and rhizomes of A. calamus in vivo, as well as anti-inflammatory activity in vitro, so as to provide scientific evidence for the traditional application. The wound-healing effect was determined by the image analysis techniques and the histological analysis in the excisional wounding test, and the anti-inflammatory activity was evaluated by the real-time RT-PCR techniques in the lipopolysaccharide-induced RAW 264.7 cells test. Aqueous extracts, administered topically at the dose range from twice to thrice in a day, could enhance significantly the rate of skin wound-healing. Moreover, the extracts could effectively inhibit the mRNA expressions of inflammatory mediators induced by lipopolysaccharide in RAW 264.7 cells. These results showed significantly the wound-healing activity of aqueous extracts in the animal model of excise wound healing, and anti-inflammatory activity in vitro.


Assuntos
Acorus , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...