Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 86(Pt 2): 543-554, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35398266

RESUMO

Small cell lung cancer (SCLC) is an extremely aggressive neuroendocrine tumor, accounting for approximated 13% of all lung cancer cases. SCLC is characterized by rapid growth and early metastasis. Despite marked improvements in the number and efficacy of targeted, therapeutic options and overall survival rates in SCLC have remained nearly unchanged for almost three decades. The lack of significant progress can be attributed to our poor understanding of the biology of SCLC. Although immune checkpoint inhibitors were recently approved as front-line therapies for SCLC, we still need to better understand the mechanisms responsible for the selective vulnerability of some SCLCs to these inhibitors. Recent work utilizing sequencing data and single cell analyses identified four distinct subsets of SCLC, based on the expression levels of the transcription factors ASCL1, NEUROD1, POU2F3 and YAP1. Each subset was found to have its own distinct biology and therapeutic vulnerabilities. However, these subsets appear to be phenotypically unstable, representing snapshots in the gradual evolution of a tumor that exhibits significant plasticity. Tumor evolution, a product of this plasticity, results in the emergence of significant intratumoral heterogeneity which plays an important role in multiple aspects of SCLC development and progression, including cell survival and proliferation, metastasis and angiogenesis. The recent paradigm shifting discoveries in the biology of SCLC are now beginning to inform the design of new therapeutic strategies for the management of this intractable disease.


Assuntos
Neoplasias Pulmonares , Tumores Neuroendócrinos , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fatores de Transcrição
2.
Artigo em Inglês | MEDLINE | ID: mdl-34580078

RESUMO

It is now widely accepted that stem cells exist in various cancers, including lung cancer, which are referred to as cancer stem cells (CSCs). CSCs are defined in this context as the subset of tumor cells with the ability to form tumors in serial transplantation and cloning assays and form tumors at metastatic sites. Mouse models of lung cancer have shown that lung CSCs reside in niches that are essential for the maintenance of stemness, plasticity, enable antitumor immune evasion, and provide metastatic potential. Similar to normal lung stem cells, Notch, Wnt, and the Hedgehog signaling cascades have been recruited by the CSCs to regulate stemness and also provide therapy-driven resistance in lung cancer. Compounds targeting ß-catenin and Sonic hedgehog (Shh) activity have shown promising anti-CSC activity in preclinical murine models of lung cancer. Understanding CSCs and their niches in lung cancer can answer fundamental questions pertaining to tumor maintenance and associated immune regulation and escape that appear important in the quest to develop novel lung cancer therapies and enhance sensitivity to currently approved chemo-, targeted-, and immune therapeutics.


Assuntos
Proteínas Hedgehog , Neoplasias Pulmonares , Animais , Proteínas Hedgehog/uso terapêutico , Humanos , Pulmão/patologia , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
3.
JTO Clin Res Rep ; 2(4): 100164, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34590014

RESUMO

INTRODUCTION: Relapsed SCLC is characterized by therapeutic resistance and high mortality rate. Despite decades of research, mechanisms responsible for therapeutic resistance have remained elusive owing to limited tissues available for molecular studies. Thus, an unmet need remains for molecular characterization of relapsed SCLC to facilitate development of effective therapies. METHODS: We performed whole-exome and transcriptome sequencing of metastatic tumor samples procured from research autopsies of five patients with relapsed SCLC. We implemented bioinformatics tools to infer subclonal phylogeny and identify recurrent genomic alterations. We implemented immune cell signature and single-sample gene set enrichment analyses on tumor and normal transcriptome data from autopsy and additional primary and relapsed SCLC data sets. Furthermore, we evaluated T cell-inflamed gene expression profiles in neuroendocrine (ASCL1, NEUROD1) and non-neuroendocrine (YAP1, POU2F3) SCLC subtypes. RESULTS: Exome sequencing revealed clonal heterogeneity (intertumor and intratumor) arising from branched evolution and identified resistance-associated truncal and subclonal alterations in relapsed SCLC. Transcriptome analyses further revealed a noninflamed phenotype in neuroendocrine SCLC subtypes (ASCL1, NEUROD1) associated with decreased expression of genes involved in adaptive antitumor immunity whereas non-neuroendocrine subtypes (YAP1, POU2F3) revealed a more inflamed phenotype. CONCLUSIONS: Our results reveal substantial tumor heterogeneity and complex clonal evolution in relapsed SCLC. Furthermore, we report that neuroendocrine SCLC subtypes are immunologically cold, thus explaining decreased responsiveness to immune checkpoint blockade. These results suggest that the mechanisms of innate and acquired therapeutic resistances are subtype-specific in SCLC and highlight the need for continued investigation to bolster therapy selection and development for this cancer.

4.
Cell Death Dis ; 12(6): 577, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088900

RESUMO

Small cell lung cancer (SCLC) remains a deadly form of cancer, with a 5-year survival rate of less than 10 percent, necessitating novel therapies. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein that is emerging as a therapeutic target and is co-expressed with BCL2 in multiple tumor types due to microRNA coregulation. We hypothesize that ROR1-targeted therapy is effective in small cell lung cancer and synergizes with therapeutic BCL2 inhibition. Tissue microarrays (TMAs) and formalin-fixed paraffin-embedded (FFPE) SCLC patient samples were utilized to determine the prevalence of ROR1 and BCL2 expression in SCLC. Eight SCLC-derived cell lines were used to determine the antitumor activity of a small molecule ROR1 inhibitor (KAN0441571C) alone and in combination with the BCL2 inhibitor venetoclax. The Chou-Talalay method was utilized to determine synergy with the drug combination. ROR1 and BCL2 protein expression was identified in 93% (52/56) and 86% (48/56) of SCLC patient samples, respectively. Similarly, ROR1 and BCL2 were shown by qRT-PCR to have elevated expression in 79% (22/28) and 100% (28/28) of SCLC patient samples, respectively. KAN0441571C displayed efficacy in 8 SCLC cell lines, with an IC50 of 500 nM or less. Synergy as defined by a combination index of <1 via the Chou-Talalay method between KAN0441571C and venetoclax was demonstrated in 8 SCLC cell lines. We have shown that ROR1 inhibition is synergistic with BCL2 inhibition in SCLC models and shows promise as a novel therapeutic target in SCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Sulfonamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/biossíntese , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Sulfonamidas/administração & dosagem , Análise de Sobrevida
5.
Cancer Res ; 81(16): 4194-4204, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34045189

RESUMO

STK11 (liver kinase B1, LKB1) is the fourth most frequently mutated gene in lung adenocarcinoma, with loss of function observed in up to 30% of all cases. Our previous work identified a 16-gene signature for LKB1 loss of function through mutational and nonmutational mechanisms. In this study, we applied this genetic signature to The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples and discovered a novel association between LKB1 loss and widespread DNA demethylation. LKB1-deficient tumors showed depletion of S-adenosyl-methionine (SAM-e), which is the primary substrate for DNMT1 activity. Lower methylation following LKB1 loss involved repetitive elements (RE) and altered RE transcription, as well as decreased sensitivity to azacytidine. Demethylated CpGs were enriched for FOXA family consensus binding sites, and nuclear expression, localization, and turnover of FOXA was dependent upon LKB1. Overall, these findings demonstrate that a large number of lung adenocarcinomas exhibit global hypomethylation driven by LKB1 loss, which has implications for both epigenetic therapy and immunotherapy in these cancers. SIGNIFICANCE: Lung adenocarcinomas with LKB1 loss demonstrate global genomic hypomethylation associated with depletion of SAM-e, reduced expression of DNMT1, and increased transcription of repetitive elements.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/fisiologia , Adenocarcinoma/genética , Metilação de DNA , Neoplasias Pulmonares/genética , S-Adenosilmetionina/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/genética , Adenocarcinoma/metabolismo , Linhagem Celular , Sobrevivência Celular , Análise por Conglomerados , Biologia Computacional , Ilhas de CpG , Bases de Dados Genéticas , Epigênese Genética , Genes ras , Humanos , Neoplasias Pulmonares/metabolismo , Metionina , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas p21(ras)/genética , Sequências Repetitivas de Ácido Nucleico
6.
NPJ Digit Med ; 3: 130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083565

RESUMO

The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However, few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474 prospective hospitalizations to develop and validate a parsimonious model to identify patients with favorable outcomes within 96 h of a prediction, based on real-time lab values, vital signs, and oxygen support variables. In retrospective and prospective validation, the model achieves high average precision (88.6% 95% CI: [88.4-88.7] and 90.8% [90.8-90.8]) and discrimination (95.1% [95.1-95.2] and 86.8% [86.8-86.9]) respectively. We implemented and integrated the model into the EHR, achieving a positive predictive value of 93.3% with 41% sensitivity. Preliminary results suggest clinicians are adopting these scores into their clinical workflows.

7.
Nature ; 569(7756): 423-427, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043741

RESUMO

Mutations in the retinoblastoma (RB) tumour suppressor pathway are a hallmark of cancer and a prevalent feature of lung adenocarcinoma1-3. Although RB was the first tumour suppressor to be identified, the molecular and cellular basis that underlies selection for persistent RB loss in cancer remains unclear4-6. Methods that reactivate the RB pathway using inhibitors of cyclin-dependent kinases CDK4 and CDK6 are effective in some cancer types and are currently under evaluation for the treatment of lung adenocarcinoma7-9. Whether RB pathway reactivation will have therapeutic effects and whether targeting CDK4 and CDK6 is sufficient to reactivate RB pathway activity in lung cancer remains unknown. Here we model RB loss during lung adenocarcinoma progression and pathway reactivation in established oncogenic KRAS-driven tumours in mice. We show that RB loss enables cancer cells to bypass two distinct barriers during tumour progression. First, RB loss abrogates the requirement for amplification of the MAPK signal during malignant progression. We identify CDK2-dependent phosphorylation of RB as an effector of MAPK signalling and critical mediator of resistance to inhibition of CDK4 and CDK6. Second, RB inactivation deregulates the expression of cell-state-determining factors, facilitates lineage infidelity and accelerates the acquisition of metastatic competency. By contrast, reactivation of RB reprograms advanced tumours towards a less metastatic cell state, but is nevertheless unable to halt cancer cell proliferation and tumour growth due to adaptive rewiring of MAPK pathway signalling, which restores a CDK-dependent suppression of RB. Our study demonstrates the power of reversible gene perturbation approaches to identify molecular mechanisms of tumour progression, causal relationships between genes and the tumour suppressive programs that they control and critical determinants of successful cancer therapy.


Assuntos
Linhagem da Célula , Progressão da Doença , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Retinoblastoma/metabolismo , Células 3T3 , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Linhagem da Célula/genética , Quinase 2 Dependente de Ciclina/deficiência , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Metástase Neoplásica/genética , Retinoblastoma/genética
8.
Mol Cell Oncol ; 6(1): 1551015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788420

RESUMO

We have identified a non-canonical role of0 Notch3 in response to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy, whereby Notch3 associates with ß-catenin, resulting in increased catenin beta-1 (CTNNB1, best known as ß-catenin) stability and increased survival of drug persister cells (DPCs). Furthermore, combined treatment of an EGFR TKI with a ß-catenin inhibitor demonstrated improved therapeutic outcomes in xenograft models.

9.
Nat Commun ; 9(1): 3198, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097569

RESUMO

EGFR tyrosine kinase inhibitors cause dramatic responses in EGFR-mutant lung cancer, but resistance universally develops. The involvement of ß-catenin in EGFR TKI resistance has been previously reported, however, the precise mechanism by which ß-catenin activation contributes to EGFR TKI resistance is not clear. Here, we show that EGFR inhibition results in the activation of ß-catenin signaling in a Notch3-dependent manner, which facilitates the survival of a subset of cells that we call "adaptive persisters". We previously reported that EGFR-TKI treatment rapidly activates Notch3, and here we describe the physical association of Notch3 with ß-catenin, leading to increased stability and activation of ß-catenin. We demonstrate that the combination of EGFR-TKI and a ß-catenin inhibitor inhibits the development of these adaptive persisters, decreases tumor burden, improves recurrence free survival, and overall survival in xenograft models. These results supports combined EGFR-TKI and ß-catenin inhibition in patients with EGFR mutant lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor Notch3/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Inibidor 1 de Ativador de Plasminogênio/sangue , Estabilidade Proteica/efeitos dos fármacos , Fatores de Transcrição/metabolismo , beta Catenina/antagonistas & inibidores
10.
Oncogene ; 37(23): 3058-3069, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29540833

RESUMO

Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.


Assuntos
Genes Supressores de Tumor , Engenharia Genética/métodos , Neoplasias Experimentais/genética , Alelos , Animais , Sistemas CRISPR-Cas , Floxuridina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Humanos , Camundongos , Camundongos Transgênicos , Interferência de RNA , Recombinases/genética
11.
Am J Physiol Gastrointest Liver Physiol ; 310(9): G747-56, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26950856

RESUMO

The aim was to determine whether treatment with BAY 60-2770, a selective activator of oxidized soluble guanylate cyclase (sGC), near the end of an ischemic event would prevent postischemic inflammation and mitochondrial dysfunction in wild-type (WT) and heme oxygenase-1 KO (HO-1(-/-)) mice. This protocol prevented increases in leukocyte rolling (LR) and adhesion (LA) to intestinal venules along with elevated TNFα and circulating neutrophil levels that accompany ischemia-reperfusion (I/R) in both animal models. We further hypothesized that a component of BAY 60-2770 treatment involves maintenance of mitochondrial membrane integrity during I/R. Measurements on isolated enterocytes of calcein fluorescence (mitochondrial permeability) and JC-1 fluorescence ratio (mitochondrial membrane potential) were reduced by I/R, indicating formation of mitochondrial permeability transition pores (mPTP). These effects were abrogated by BAY 60-2770 as well as cyclosporin A and SB-216763, which prevented mPTP opening and inhibited glycogen synthase kinase-3ß (GSK-3ß), respectively. Western blots of WT and HO-1(-/-) enterocytes indicated that GSK-3ß phosphorylation on Ser(9) (inhibitory site) was reduced by half following I/R alone (increased GSK-3ß activity) and increased by one-third (reduced GSK-3ß activity) following BAY 60-2770. Other investigators have associated phosphorylation of the GSK-3ß substrate cyclophilin D (pCyPD) with mPTP formation. We observed a 60% increase in pCyPD after I/R, whereas BAY 60-2770 treatment of sham and I/R groups reduced pCyPD by about 20%. In conclusion, selective activation of oxidized sGC of WT and HO-1(-/-) during ischemia protects against I/R-induced inflammation and preserves mucosal integrity in part by reducing pCyPD production and mPTP formation.


Assuntos
Enterócitos/metabolismo , Isquemia/metabolismo , Mitocôndrias/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/metabolismo , Enterócitos/efeitos dos fármacos , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Intestinos/irrigação sanguínea , Intestinos/citologia , Potencial da Membrana Mitocondrial , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial
12.
J Biol Chem ; 290(26): 15996-6020, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25940091

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) is a critical regulator of protein synthesis. The best studied targets of mTORC1 in translation are the eukaryotic initiation factor-binding protein 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6K1). In this study, we identify the La-related protein 1 (LARP1) as a key novel target of mTORC1 with a fundamental role in terminal oligopyrimidine (TOP) mRNA translation. Recent genome-wide studies indicate that TOP and TOP-like mRNAs compose a large portion of the mTORC1 translatome, but the mechanism by which mTORC1 controls TOP mRNA translation is incompletely understood. Here, we report that LARP1 functions as a key repressor of TOP mRNA translation downstream of mTORC1. Our data show the following: (i) LARP1 associates with mTORC1 via RAPTOR; (ii) LARP1 interacts with TOP mRNAs in an mTORC1-dependent manner; (iii) LARP1 binds the 5'TOP motif to repress TOP mRNA translation; and (iv) LARP1 competes with the eukaryotic initiation factor (eIF) 4G for TOP mRNA binding. Importantly, from a drug resistance standpoint, our data also show that reducing LARP1 protein levels by RNA interference attenuates the inhibitory effect of rapamycin, Torin1, and amino acid deprivation on TOP mRNA translation. Collectively, our findings demonstrate that LARP1 functions as an important repressor of TOP mRNA translation downstream of mTORC1.


Assuntos
Autoantígenos/metabolismo , Regulação para Baixo , Glicoproteínas de Membrana/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Ribonucleoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Glicoproteínas de Membrana/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , RNA Longo não Codificante , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteína Regulatória Associada a mTOR , Ribonucleoproteínas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Antígeno SS-B
13.
Am J Physiol Heart Circ Physiol ; 305(4): H521-32, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23771693

RESUMO

Previously we have shown that, unlike wild-type mice (WT), heme oxygenase-1 knockout (HO-1-/-) mice developed nitrate tolerance and were not protected from inflammation caused by ischemia-reperfusion (I/R) when preconditioned with a H2S donor. We hypothesized that stimulation (with BAY 41-2272) or activation (with BAY 60-2770) of soluble guanylate cyclase (sGC) would precondition HO-1-/- mice against an inflammatory effect of I/R and increase arterial nitrate responses. Intravital fluorescence microscopy was used to visualize leukocyte rolling and adhesion to postcapillary venules of the small intestine in anesthetized mice. Relaxation to ACh and BAY compounds was measured on superior mesenteric arteries isolated after I/R protocols. Preconditioning with either BAY compound 10 min (early phase) or 24 h (late phase) before I/R reduced postischemic leukocyte rolling and adhesion to sham control levels and increased superior mesenteric artery responses to ACh, sodium nitroprusside, and BAY 41-2272 in WT and HO-1-/- mice. Late-phase preconditioning with BAY 60-2770 was maintained in HO-1-/- and endothelial nitric oxide synthase knockout mice pretreated with an inhibitor (dl-propargylglycine) of enzymatically produced H2S. Pretreatment with BAY compounds also prevented the I/R increase in small intestinal TNF-α. We speculate that increasing sGC activity and related PKG acts downstream to H2S and disrupts signaling processes triggered by I/R in part by maintaining low cellular Ca²âº. In addition, BAY preconditioning did not increase sGC levels, yet increased the response to agents that act on reduced heme-containing sGC. Collectively these actions would contribute to increased nitrate sensitivity and vascular function.


Assuntos
Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Ativadores de Enzimas/farmacologia , Heme Oxigenase-1/deficiência , Hidrocarbonetos Fluorados/farmacologia , Inflamação/prevenção & controle , Intestino Delgado/irrigação sanguínea , Isquemia/tratamento farmacológico , Proteínas de Membrana/deficiência , Oclusão Vascular Mesentérica/tratamento farmacológico , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Traumatismo por Reperfusão/prevenção & controle , Doenças Vasculares/tratamento farmacológico , Animais , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática , Guanilato Ciclase/metabolismo , Heme Oxigenase-1/genética , Sulfeto de Hidrogênio/metabolismo , Inflamação/enzimologia , Inflamação/genética , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Isquemia/enzimologia , Isquemia/genética , Isquemia/fisiopatologia , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Proteínas de Membrana/genética , Artéria Mesentérica Superior/efeitos dos fármacos , Artéria Mesentérica Superior/enzimologia , Artéria Mesentérica Superior/cirurgia , Isquemia Mesentérica , Oclusão Vascular Mesentérica/enzimologia , Oclusão Vascular Mesentérica/genética , Oclusão Vascular Mesentérica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Guanilil Ciclase Solúvel , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Vasculares/enzimologia , Doenças Vasculares/genética , Doenças Vasculares/fisiopatologia , Vasodilatação/efeitos dos fármacos , Vênulas/efeitos dos fármacos , Vênulas/enzimologia
14.
Int J Artif Organs ; 34(11): 1095-105, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22183523

RESUMO

OBJECTIVES: The present study evaluated in vitro and in vivo the effects of quercetin (QC), a major ingredient in various flavonoids, on peripheral nerve regeneration. METHODS: In the in vitro study, we found that QC at concentrations of 0.1, 1, and 10 µg/mL could significantly promote the survival and outgrowth of cultured Schwann cells as compared with the controls treated with culture medium only. In the in vivo study, we evaluated peripheral nerve regeneration across a 15-mm gap in the sciatic nerve of the rat, using a silicone rubber nerve chamber filled with the QC solution. In the control group, the chambers were filled with normal saline only. RESULTS: At the end of 8 weeks, morphometric data revealed that all 3 QC groups significantly increased the count and density of myelinated axons as compared with the controls. Electrophysiological measurements showed that the QC-treated group at 1 µg/mL had a significantly larger area of evoked muscle action potential (MAP) compared with the controls. In addition, the amplitude of the MAP in the QC-treated groups at 0.1 and 1 µg/mL was significantly larger than that in the controls. CONCLUSIONS: All of these results indicate that QC treatment has nerve growth-promoting effects which may lead to a promising herbal medicine for the recovery of regenerating peripheral nerves.


Assuntos
Regeneração Nervosa/efeitos dos fármacos , Quercetina/farmacologia , Nervo Isquiático/efeitos dos fármacos , Neuropatia Ciática/tratamento farmacológico , Animais , Axônios/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Potenciais Evocados , Bainha de Mielina/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/fisiopatologia , Nervo Isquiático/cirurgia , Neuropatia Ciática/fisiopatologia , Fatores de Tempo
15.
Macromol Biosci ; 11(7): 914-26, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21500350

RESUMO

In this study, GCC protein was used for the first time to construct a biodegradable conduit for peripheral nerve repair. The GCC was highly stable with a sufficiently high level of mechanical properties and it was non-toxic and non-apoptotic which could maintain the survival and outgrowth of Schwann cells. Noninvasive bioluminescence imaging accompanied with histochemical assessment showed the GCC was highly biocompatible after subcutaneous implantation in transgenic mice. Electrophysiology, labeling of calcitonin gene-related peptide in the lumbar spinal cord and histology analysis also showed a rapid morphological and functional recovery for disrupted rat sciatic nerves repaired with the GCC conduits. Therefore, we conclude that the GCC can offer great nerve regeneration characteristics and can be a promising material for the successful repair of peripheral nerve defects.


Assuntos
Caseínas/farmacologia , Glutaral/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Animais , Calcitonina/genética , Caseínas/química , Proliferação de Células/efeitos dos fármacos , Eletrofisiologia , Glutaral/química , Regeneração Tecidual Guiada , Plexo Lombossacral , Proteínas Luminescentes/análise , Camundongos , Camundongos Transgênicos , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/fisiologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Traumatismos do Sistema Nervoso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...