Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304525

RESUMO

Fe[Fe(CN)6] (FeHCF) is considered a promising material for capacitive deionization-desalination of saline wastewater due to its excellent structure. However, additives are usually introduced during the synthesis of FeHCF in order to avoid [Fe(CN)6]3- vacancy defects filled by ligand water, which can result in the appearance of harmful byproducts and additional water treatment costs. In this study, an additive-free in situ vacancy repair strategy is proposed for the rapid synthesis of high-quality FeHCF in a saturated K3Fe(CN)6 solution. During the process of synthesizing FeHCF in solution, a high concentration of [Fe(CN)6]3- is found to facilitate the binding of Fe3+ to [Fe(CN)6]3- and hinder the hydrolysis and coordination reaction of Fe3+. After undergoing repair, FeHCF4 demonstrates an increased capacity and highly reversible electrochemical performance due to the robust structure. When utilized as Faraday cathodes in hybrid capacitive deionization (HCDI) systems, FeHCF4 exhibits a higher salt removal capacity (65.67 mg g-1) and lower energy consumption (0.68 kWh kg-1-NaCl) compared to unrepaired FeHCF1, while still maintaining excellent cycling performance. This environmentally friendly approach of repairing vacancies serves as a source of inspiration for the advancement of high-performance Prussian Blue analogues as capacitive sodium-removing materials.

2.
Mol Biomed ; 5(1): 34, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39179711

RESUMO

Venous thromboembolism (VTE) is a prevalent complication among patients with cancer, contributing significantly to morbidity and mortality. However, the relationship between VTE-related genes (VRGs) and their potential impact on prognosis, immune response, and therapeutic targets in various cancer types remains unclear. Based on the coagulation and complement pathways, we identified hub VRGs that play a role in regulating the immune response in cancer. Specifically, coagulation factor III (F3), plasminogen activator (PLAT) and complement C1s (C1S) were identified as genes that exhibit high expression levels, positively correlating with tumor stemness and copy number variations, while inversely correlating with methylation levels, in particular cancer types. Pan-cancer survival analysis revealed detrimental effects of these VRGs in several cancer types, notably in glioblastoma and lower grade glioma (GMBLGG). Further analysis using receiver operating characteristic (ROC) curves demonstrated a high accuracy of F3, PLAT and C1S in predicting outcomes in GBMLGG, with area under the curve (AUC) values ranging from 0.78 to 0.9. Validation of the prognostic value of these three genes in GMBLGG was conducted using an independent Gene Expression Omnibus (GEO) dataset. Additionally, gene-drug association analysis identified ciclosporin, ouabain and 6- mercaptopurine, which all exhibit immunosuppressive properties, as potential therapeutic options for tumor patients exhibiting high F3, PLAT or C1S expression, respectively. In summary, our findings provide a bioinformatics perspective on VRGs in pan-cancer, highlighting the pivotal roles of F3, PLAT and C1S, which could potentially be therapeutically exploited and targeted in several cancers, especially in GBMLGG.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glioma , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Tromboembolia Venosa/etiologia , Glioblastoma/genética , Biomarcadores Tumorais/genética , Prognóstico , Glioma/genética , Neoplasias Encefálicas/genética , Curva ROC , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Gradação de Tumores , Biologia Computacional , Antitrombina III
3.
Comput Struct Biotechnol J ; 23: 2565-2579, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38983650

RESUMO

Cervical cancer remains a significant global public health concern, often exhibits cisplatin resistance in clinical settings. Hypoxia, a characteristic of cervical cancer, substantially contributes to cisplatin resistance. To evaluate the therapeutic efficacy of cisplatin in patients with cervical cancer and to identify potential effective drugs against cisplatin resistance, we established a hypoxia-inducible factor-1 (HIF-1)-related risk score (HRRS) model using clinical data from patients treated with cisplatin. Cox and LASSO regression analyses were used to stratify patient risks and prognosis. Through qRT-PCR, we validated nine potential prognostic HIF-1 genes that successfully predict cisplatin responsiveness in patients and cell lines. Subsequently, we identified fostamatinib, an FDA-approved spleen tyrosine kinase inhibitor, as a promising drug for targeting the HRRS-high group. We observed a positive correlation between the IC50 values of fostamatinib and HRRS in cervical cancer cell lines. Moreover, fostamatinib exhibited potent anticancer effects on high HRRS groups in vitro and in vivo. In summary, we developed a hypoxia-related gene signature that suggests cisplatin response prediction in cervical cancer and identified fostamatinib as a potential novel treatment approach for resistant cases.

4.
Sci Total Environ ; 793: 148481, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175604

RESUMO

The fine particulate matter (PM2.5) emitted by burning biomass has become the main source of pollution in cities; this pollution seriously threatens the ecosystem and inhabitants' health. A major challenge in dealing with this issue is the uncertainty regarding the influence of burning biomass on PM2.5 regional transport. In this study, Harbin-Changchun Megalopolis is the research area. Using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model combined with satellite data and PM2.5 monitoring data, we quantitatively analyzed the regional transport of PM2.5 from burning biomass upwind of each city under different emission conditions. Conditions at burn sites, especially emission intensity and meteorological factors, as well as transport distance play significant roles in the regional transport of PM2.5. Higher emission intensity aggravated the concentration of downwind PM2.5, at most 19.7 µg ⋅ m-3. Shorter transport distance strengthened the impact of biomass burning on downstream PM2.5 by weakening elimination, which could be up to 96.8 µg ⋅ m-3. Moreover, meteorological factors at fire points were closely related to the transport of PM2.5. First, lower planetary boundary layer height could enhance the transport of PM2.5 from the burning biomass by inhibiting vertical diffusion, and the enhancement could be up to 46.1 µg ⋅ m-3. Second, compared to strong wind, light wind caused the weaker dilution, enhancing PM2.5 regional transport by as much as 32.5 µg ⋅ m-3. Third, relatively humidity at 30%-40% had the strongest effect in facilitating the transport of PM2.5 from burning biomass. We conclude that comprehensively considering these three factors, namely the emission intensity, transport distance and meteorological factors at burn sites can facilitate the cross-regional development of accurate prediction models and effective pollution control measures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomassa , China , Cidades , Ecossistema , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
5.
Sci Total Environ ; 733: 139112, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470715

RESUMO

Black carbon (BC), not only has a negative impact on human health, but also contributes to visibility degradation and the attenuation of solar radiation due to light absorption. In this paper, we investigated the variations of BC concentration, BC optical characteristics and its effects on the physical and optical properties of atmospheric aerosols based on AERONET data during atmospheric pollution conditions in Beijing from 2012 to 2017. The results indicated that the average annual ground-level BC concentration and BC/PM2.5 were 8.9 µg m-3 and 6.7%, respectively, from 2012 to 2017 during atmospheric pollution conditions in Beijing. The annual mean ground-level BC concentration showed weak variation, but the monthly variation was pronounced during atmospheric pollution conditions. Moreover, the BC column concentration had a higher correlation with absorptive aerosol optical thickness (AAOT) at 870 nm (R2 = 0.93) than 440 nm (R2 = 0.73). The difference in AAOT between 440 nm and 870 nm was more significant under high BC column concentration. The seasonal variation of the BC column concentration that contributed to the AAOT at 870 nm displayed a consistent monthly average variation tendency. The BC column concentrations were divided into three segments of low, moderate, and high according to the results of the approximately normal distribution of the BC column concentration. Compared with high BC concentration, the single scattering albedo (SSA) and asymmetry parameter were enhanced by 0.05 and 0.04 in low BC concentrations, respectively. On the contrary, the fine mode fraction (FMF) was dropped by 12.5% in low BC concentrations. A higher BC concentration contributed to the enhancement in the AAOT and the extinction ratio of the fine mode aerosol. Meanwhile, the atmospheric particles' forward scattering ability was also attenuated under a high BC concentration.

6.
Sci Rep ; 9(1): 15201, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645580

RESUMO

Air pollution has aroused significant public concern in China, therefore, long-term air-quality data with high temporal and spatial resolution are needed to understand the variations of air pollution in China. However, the yearly variations with high spatial resolution of air quality and six air pollutants are still unknown for China until now. Therefore, in this paper, we analyze the spatial and temporal variations of air quality and six air pollutants in 366 cities across mainland China during 2015-2017 for the first time to the best of our knowledge. The results indicate that the annual mean mass concentrations of PM2.5, PM10, SO2, and CO all decreased year by year during 2015-2017. However, the annual mean NO2 concentrations were almost unchanged, while the annual mean O3 concentrations increased year by year. Anthropogenic factors were mainly responsible for the variations of air quality. Further analysis suggested that PM2.5 and PM10 were the main factors influencing air quality, while NO2 played an important role in the formation of PM2.5 and O3. These findings can provide a theoretical basis for the formulation of future air-pollution control policy in China.

7.
Sci Total Environ ; 656: 977-985, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625684

RESUMO

Associated with its modernization, Beijing has experienced significant fine particulate matter (PM2.5) pollution, especially in winter. In 2016, severe PM2.5 pollution (PM2.5 > 250 µg/m3) lasted over 6 days and affected over 23 million people. A major challenge in dealing with this issue is the uncertainty regarding the influence of individual meteorological factors to the overall PM2.5 concentration in Beijing. Thus, applying an empirical regression method to long-term ground-based PM2.5 data and meteorological sounding measurements, we attempted to analyze the influence of individual meteorological factors on PM2.5 pollution during winters in Beijing. We found that horizontal dilution and vertical aggregation plays a major role in PM2.5 pollution during the winter of 2016. The impact of horizontal wind on PM2.5 concentration in Beijing was mainly from its dilution, the dilution of northerly wind contributed 27.8% in 2016, far below its contribution in 2015 (32.2%). The contribution from the growing vertical aggregation observed in 2016 was mainly the result of both the lower height of the planetary boundary layer and the greater depth of the temperature inversion. The dilution of the planetary boundary layer height contributed 9.8% to PM2.5 pollution in 2016, 5.4% lower than that in 2017. Compared with the temperature difference of the inversion layer, the temperature inversion depth better reflects the aggregated impact of temperature inversions to PM2.5, which was 10.9% in 2015, and the ratio rose to 14.3% in 2016. Relative humidity is also an important impacting factor, which contributed 41.0%, far higher than the ratio in 2017 (26.7%). Such results imply that we should focus on not only local emission control, but also horizontal atmospheric transport and meteorological conditions in order to provide a more accurate analysis of pollution mechanisms, conductive to air pollution governance in Beijing.

8.
Environ Sci Pollut Res Int ; 25(13): 13048-13055, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29480398

RESUMO

Liquid digestate (LD) is highly turbid and contains ammonium (NH4+-N), which negatively influences microalgal growth. Therefore, a method of reducing LD turbidity and NH4+-N content is proposed, using struvite precipitation. To obtain struvite precipitation supernatant with an ideal UV transmittance, NH4+-N concentration, and N/P ratio for microalgal growth, the effects of pH and the molar ratio of NH4+/Mg2+/PO43- were studied. Results show that the optimal NH4+/Mg2+/PO43- molar ratio was 1:1.5:1.5, with a pH value of 8.5, following NaOH addition. Gray relational analysis (GRA) was applied to obtain a relative gray scale for the evaluation of multiple outputs. Results show that Chlorella regularis FACHB-1068 was the optimal microalgae species to support growth in the struvite precipitation supernatant. Using struvite precipitation and treatment with cultured C. regularis FACHB-1068 for 7 days, the removal efficiencies of NH4+-N, PO43--P, and COD in LD were 96.52, 99.33, and 35.30%, respectively.


Assuntos
Chlorella/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Modelos Teóricos , Esgotos/química , Estruvita/análise , Compostos de Amônio/química , Precipitação Química , China , Fosfatos/química
9.
Sci Rep ; 7(1): 3651, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623330

RESUMO

Elevated ground-level ozone (O3), which is an important aspect of air quality related to public health, has been causing increasing concern. This study investigated the spatiotemporal distribution of ground-level O3 concentrations in China using a dataset from the Chinese national air quality monitoring network during 2013-2015. This research analyzed the diurnal, monthly and yearly variation of O3 concentrations in both sparsely and densely populated regions. In particular, 6 major Chinese cities were selected to allow a discussion of variations in O3 levels in detail, Beijing, Chengdu, Guangzhou, Lanzhou, Shanghai, and Urumchi, located on both sides of the Heihe-Tengchong line. Data showed that the nationwide 3-year MDA8 of ground-level O3 was 80.26 µg/m3. Ground-level O3 concentrations exhibited monthly variability peaking in summer and reaching the lowest levels in winter. The diurnal cycle reached a minimum in morning and peaked in the afternoon. Yearly average O3 MDA8 concentrations in Beijing, Chengdu, Lanzhou, and Shanghai in 2015 increased 12%, 25%, 34%, 22%, respectively, when compared with those in 2013. Compared with World Health Organization O3 guidelines, Beijing, Chengdu, Guangzhou, and Shanghai suffered O3 pollution in excess of the 8-hour O3 standard for more than 30% of the days in 2013 to 2015.

10.
Sci Total Environ ; 601-602: 1024-1030, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599359

RESUMO

Exposure to PM2.5 results in negative effects on human health. However, PM2.5 exposure at the national scale is poorly known for China owing to limited spatial and temporal PM2.5 concentration data. In this study, we present analyses of PM2.5 exposure throughout China using high-resolution temporal and spatial ground-level PM2.5 data from 2015. Our results indicated that the annual mean PM2.5 concentration was 52.81µg/m3, and that the highest annual mean PM2.5 concentrations primarily appeared in the North China Plain. We also found the lowest and highest monthly mean PM2.5 concentrations appeared in August and January, respectively, while the lowest and highest diurnal mean PM2.5 concentrations occurred at 16:00 and 10:00, respectively. Moreover, comparisons to data from 2013 indicated that the annual mean PM2.5 concentrations decreased by 12.31% from 2013 to 2015, which was likely due to the implementation of environmental protection laws in early 2015. Our findings provide new insights, for not only studies of PM2.5 exposure and human health, but also to inform the implementation of national and regional air pollution reduction policies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA