Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Mol Cell Biochem ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782835

RESUMO

Thioredoxin reductase (TrxR) is a pivotal regulator of redox homeostasis. It is frequently overexpressed in various cancer cells, including prostate cancer, making it a promising target for the development of anti-cancer drugs. In this study, we screened a series of newly designed complexes of gold(I) phosphine. Specifically, Compound 5 exhibited the highest cytotoxicity against prostate cancer cells and demonstrated stronger antitumor effects than commonly used drugs, such as cisplatin and auranofin. Importantly, our mechanistic study revealed that Compound 5 effectively inhibits the TrxR system in vitro. Additionally, Compound 5 promoted intracellular accumulation of reactive oxygen species (ROS), leading to mitochondrial dysfunction and irreversible apoptosis in prostate cancer cells. Our in vivo xenograft study further demonstrated that Compound 5 has excellent antitumor activity against prostate cancer cells, but does not cause severe side effects. These findings provide a promising lead Compound for the development of novel antitumor agents targeting prostate cancer and offer a valuable tool for investigating biological pathways involving TrxR and ROS modulation.

2.
Eye Contact Lens ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695745

RESUMO

OBJECTIVES: To explore the potential of artificial intelligence (AI) to assist prescription determination for orthokeratology (OK) lenses. METHODS: Artificial intelligence algorithm development followed by a real-world trial. A total of 11,502 OK lenses fitting records collected from seven clinical environments covering major brands. Records were randomly divided in a three-way data split. Cross-validation was used to identify the most accurate algorithm, followed by an evaluation using an independent test data set. An online AI-assisted system was implemented and assessed in a real-world trial involving four junior and three senior clinicians. RESULTS: The primary outcome measure was the algorithm's accuracy (ACC). The ACC of the best performance of algorithms to predict the targeted reduction amplitude, lens diameter, and alignment curve of the prescription was 0.80, 0.82, and 0.83, respectively. With the assistance of the AI system, the number of trials required to determine the final prescription significantly decreased for six of the seven participating clinicians (all P <0.01). This reduction was more significant among junior clinicians compared with consultants (0.76±0.60 vs. 0.32±0.60, P <0.001). Junior clinicians achieved clinical outcomes comparable to their seniors, as 93.96% (140/149) and 94.44% (119/126), respectively, of the eyes fitted achieved unaided visual acuity no worse than 0.8 ( P =0.864). CONCLUSIONS: AI can improve prescription efficiency and reduce discrepancies in clinical outcomes among clinicians with differing levels of experience. Embedment of AI in practice should ultimately help lessen the medical burden and improve service quality for myopia boom emerging worldwide.

3.
Inorg Chem ; 63(1): 462-473, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38141022

RESUMO

Adding hydrophilic ligands into aqueous solutions for the selective binding of actinides(III) is acknowledged as an advanced strategy in Ln(III)/An(III) separation. In view of the recycling and radioactive waste disposal of the minor actinide, there remains an urgent need to design and develop the appropriate ligand for selective separation of An(III) from Ln(III). Herein, four novel hydrophilic ligands with hard-soft hybrid donors, derived from the pyridine and phenanthroline skeletons, were designed and synthesized as masking agents for selective complexation of An(III) in the aqueous phase. The known N,N,N',N'-tetraoctyl diglycolamide (TODGA) was used as lipophilic extractant in the organic phase for extraction of Ln(III), and a new strategy for the competitive extraction of An(III) and Ln(III) was developed based on TODGA and the above hydrophilic ligands. The optimal hydrophilic ligand of N,N'-bis(2-hydroxyethyl)-2,9-dicarboxamide-1,10-phenanthroline (2OH-DAPhen) displayed exceptional selectivity toward Am(III) over Ln(III), with the concentrations of HNO3 ranging from 0.05 to 3.0 M. The maximum separation factors were up to 1365 for Eu/Am, 417.66 for Eu/Cm, and 42.38 for La/Am. The coordination mode and bonding property of 2OH-DAPhen with Ln(III) were investigated by 1H NMR titration, UV-vis spectrophotometric titration, luminescence titration, FT-IR, ESI-HRMS analysis, and DFT calculations. The results revealed that the predominant species formed in the aqueous phase was a 1:1 ligand/metal complex. DFT calculations also confirmed that the affinity of 2OH-DAPhen for Am(III) was better than that for Eu(III). The present work using a competitive extraction strategy developed a feasible alternative method for the selective separation of trivalent actinides from lanthanides.

4.
Nucleic Acids Res ; 51(14): 7691-7703, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395400

RESUMO

Construction of synthetic circuits that can reprogram genetic networks and signal pathways is a long-term goal for manipulation of biosystems. However, it is still highly challenging to build artificial genetic communications among endogenous RNA species due to their sequence independence and structural diversities. Here we report an RNA-based synthetic circuit that can establish regulatory linkages between expression of endogenous genes in both Escherichiacoli and mammalian cells. This design employs a displacement-assembly approach to modulate the activity of guide RNA for function control of CRISPR/Cas9. Our experiments demonstrate the great effectiveness of this RNA circuit for building artificial connections between expression of originally unrelated genes. Both exogenous and naturally occurring RNAs, including small/microRNAs and long mRNAs, are capable of controlling expression of another endogenous gene through this approach. Moreover, an artificial signal pathway inside mammalian cells is also successfully established to control cell apoptosis through our designed synthetic circuit. This study provides a general strategy for constructing synthetic RNA circuits, which can introduce artificial connections into the genetic networks of mammalian cells and alter the cellular phenotypes.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Animais , Sistemas CRISPR-Cas/genética , Genes Sintéticos , Redes Reguladoras de Genes/genética , RNA Mensageiro , Edição de Genes , Mamíferos/genética
5.
Am J Transl Res ; 15(6): 4332-4344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434810

RESUMO

PURPOSE: To identify and validate the immune-related gene signature in patients with acute myeloid leukemia (AML). METHODS: Differentially expressed genes (DEGs) profiles and survival data were obtained from The Cancer Genome Atlas (TCGA), following screened immune-associated genes from the InnateDB database. Subsequently, the weighted gene co-expression network analysis (WGCNA) was used to detect functional modules, and survival analysis was performed. The least absolute shrinkage and selection operator (LASSO) regression model combined with a partial likelihood-based Cox proportional hazard regression model was applied to select prognostic genes, and the ESTIMATE algorithm was used to construct an immune score-based risk assessment model. Finally, two independent datasets from the Gene Expression Omnibus (GEO) and our clinical data were used for external validation. Moreover, a subpopulation of the immune microenvironment cells was analyzed by the CIBERSORT algorithm, and its related serum indicator was identified by the enzyme-linked immunosorbent assay (ELISA) in clinical samples. RESULTS: Finally, CTSD, GNB2, CDK6, and WAS were identified as the immune-related gene signature, and the risk stratification model was validated in both the GSE12417 database and our clinical cohort. Furthermore, the fraction of activated mast cells was identified. CIBERSORT algorithm showed that these cells have a positive association with prognosis. In addition, mast cell stimulator IL-33 was markedly decreased in AML patients with poor prognoses. CONCLUSION: A novel immune-related gene signature (CTSD, GNB2, CDK6 and WAS) and its associated plasma indicator (mast cells activator, IL-33) were found to have prognostic value in AML patients.

6.
Cell Res ; 33(12): 904-922, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37460805

RESUMO

Pyroptosis is a type of regulated cell death executed by gasdermin family members. However, how gasdermin-mediated pyroptosis is negatively regulated remains unclear. Here, we demonstrate that mannose, a hexose, inhibits GSDME-mediated pyroptosis by activating AMP-activated protein kinase (AMPK). Mechanistically, mannose metabolism in the hexosamine biosynthetic pathway increases levels of the metabolite N-acetylglucosamine-6-phosphate (GlcNAc-6P), which binds AMPK to facilitate AMPK phosphorylation by LKB1. Activated AMPK then phosphorylates GSDME at Thr6, which leads to blockade of caspase-3-induced GSDME cleavage, thereby repressing pyroptosis. The regulatory role of AMPK-mediated GSDME phosphorylation was further confirmed in AMPK knockout and GSDMET6E or GSDMET6A knock-in mice. In mouse primary cancer models, mannose administration suppressed pyroptosis in small intestine and kidney to alleviate cisplatin- or oxaliplatin-induced tissue toxicity without impairing antitumor effects. The protective effect of mannose was also verified in a small group of patients with gastrointestinal cancer who received normal chemotherapy. Our study reveals a novel mechanism whereby mannose antagonizes GSDME-mediated pyroptosis through GlcNAc-6P-mediated activation of AMPK, and suggests the utility of mannose supplementation in alleviating chemotherapy-induced side effects in clinic applications.


Assuntos
Manose , Piroptose , Humanos , Animais , Camundongos , Manose/farmacologia , Proteínas Quinases Ativadas por AMP , Gasderminas
7.
BMJ Open ; 13(5): e068130, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37247960

RESUMO

OBJECTIVE: The aim is to integrate quantitative and qualitative evidence to understand the effectiveness and experience of advance care planning (ACP) for frail elderly. DESIGN: A mixed-methods systematic review and meta-analysis was conducted. Quality evaluation was conducted using critical appraisal tools from the Joanna Briggs Institute. Data were synthesised and pooled for meta-analysis or meta-aggregation as needed. DATA SOURCES: An electronic search of MEDLINE, CINAHL, Embase, PubMed, PsycINFO, and Cochrane Library databases from January 2003 to April 2022. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: We included experimental and mixed-methods studies. The quantitative component attempts to incorporate a broader study design. The qualitative component aids in comprehending the participant's experience with ACP and its efficacy. DATA EXTRACTION AND SYNTHESIS: Two independent reviewers undertook screening, data extraction and quality assessment. The quantitative and qualitative data were synthesised and integrated using a convergent segregated approach. RESULTS: There were 12 158 articles found, and 17 matched the inclusion criteria. The quality of the quantitative component of most included studies (6/10) was rated as low, and the qualitative component of half included studies (4/8) was rated as moderate. The meta-analysis showed that the intervention of ACP for frail elderly effectively increases readiness, knowledge and process of ACP behaviours. The meta-aggregation showed that the participants hold a positive attitude towards ACP and think it facilitates expressing their preferences for the medical decision. CONCLUSION: ACP is an effective and feasible strategy to facilitate frail elderly to express their healthcare wishes timely and improve their outcomes. This study could provide proof for a better understanding of the subject and help direct future clinical practice. More well-designed randomised controlled trials evaluating the most effective ACP interventions and tools are needed for the frail elderly population. PROSPERO REGISTRATION NUMBER: CRD42022329615.


Assuntos
Planejamento Antecipado de Cuidados , Idoso Fragilizado , Idoso , Humanos , Instalações de Saúde
8.
Cell Chem Biol ; 30(3): 261-277.e8, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36889311

RESUMO

Pulmonary fibrosis is a typical sequela of coronavirus disease 2019 (COVID-19), which is linked with a poor prognosis for COVID-19 patients. However, the underlying mechanism of pulmonary fibrosis induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 induced pulmonary fibrosis by activating pulmonary fibroblasts. N protein interacted with the transforming growth factor ß receptor I (TßRI), to disrupt the interaction of TßRI-FK506 Binding Protein12 (FKBP12), which led to activation of TßRI to phosphorylate Smad3 and boost expression of pro-fibrotic genes and secretion of cytokines to promote pulmonary fibrosis. Furthermore, we identified a compound, RMY-205, that bound to Smad3 to disrupt TßRI-induced Smad3 activation. The therapeutic potential of RMY-205 was strengthened in mouse models of N protein-induced pulmonary fibrosis. This study highlights a signaling pathway of pulmonary fibrosis induced by N protein and demonstrates a novel therapeutic strategy for treating pulmonary fibrosis by a compound targeting Smad3.


Assuntos
COVID-19 , Fibrose Pulmonar , Animais , Camundongos , COVID-19/complicações , Fibrose , Proteínas do Nucleocapsídeo/uso terapêutico , Fibrose Pulmonar/complicações , Fibrose Pulmonar/tratamento farmacológico , SARS-CoV-2
9.
Cell Death Dis ; 14(2): 115, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781842

RESUMO

Stomach adenocarcinoma (STAD) is one of the leading causes of cancer-related death globally. Metastasis and drug resistance are two major causes of failures in current chemotherapy. Here, we found that the expression of Ras-related protein 31 (Rab31) is upregulated in human STAD tissues and high expression of Rab31 is closely associated with poor survival time. Furthermore, we revealed that Rab31 promotes cisplatin resistance and metastasis in human STAD cells. Reduced Rab31 expression induces tumor cell apoptosis and increases cisplatin sensitivity in STAD cells; Rab31 overexpression yielded the opposite result. Rab31 silencing prevented STAD cell migration, whereas the overexpression of Rab31 increased the metastatic potential. Further work showed that Rab31 mediates cisplatin resistance and metastasis via epithelial-mesenchymal transition (EMT) pathway. In addition, we found that both Rab31 overexpression and cisplatin treatment results in increased Twist1 expression. Depletion of Twist1 enhances sensitivity to cisplatin in STAD cells, which cannot be fully reversed by Rab31 overexpression. Rab31 could activate Twist1 by activating Stat3 and inhibiting Mucin 1 (MUC-1). The present study also demonstrates that Rab31 knockdown inhibited tumor growth in mice STAD models. These findings indicate that Rab31 is a novel and promising biomarker and potential therapeutic target for diagnosis, treatment and prognosis prediction in STAD patients. Our data not only identifies a novel Rab31/Stat3/MUC-1/Twist1/EMT pathway in STAD metastasis and drug resistance, but it also provides direction for the exploration of novel strategies to predict and treat STAD in the future.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Animais , Camundongos , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Cisplatino/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
10.
BMC Cancer ; 23(1): 104, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717819

RESUMO

PURPOSE: To explore the potential pathogenesis and clinical features of second primary glioblastoma (spGBM) following first primary renal cell carcinoma (fpRCC). METHODS: Patients with spGBM after fpRCC were enrolled from our institution and the SEER dataset. Sanger sequencing, whole genome sequencing, and immunehistochemistry were used to detect molecular biomarkers. RESULTS: Four and 122 cases from our institution and the SEER dataset, respectively, were collected with an overall median age of 69 years at spGBM diagnosis following fpRCC. The median interval time between fpRCC and spGBM was 50.7 months and 4 years, for the four and 122 cases respectively. The median overall survival time was 11.2 and 6.0 months for the two datasets. In addition, spGBM patients of younger age (< 75 years) or shorter interval time (< 1 year) had favorable prognosis (p = 0.081 and 0.05, respectively). Moreover, the spGBM cases were molecularly classified as TERT only paired with TP53 mutation, PIK3CA mutation, EGFR alteration, low tumor mutation burden, and stable microsatellite status. CONCLUSIONS: This is the first study to investigate the pathogenesis and clinical features of spGBM following spRCC. We found that spGBMs are old-age related, highly malignant, and have short survival time. Moreover, they might be misdiagnosed and treated as brain metastases from RCC. Thus, the incidence of spGBMs after fpRCC is underestimated. Further studies are needed to investigate the underlying molecular mechanisms and clinical biomarkers for the development of spGBM following fpRCC.


Assuntos
Carcinoma de Células Renais , Glioblastoma , Neoplasias Renais , Humanos , Idoso , Carcinoma de Células Renais/patologia , Glioblastoma/patologia , Mutação , Genômica , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias Renais/patologia
11.
Front Pharmacol ; 13: 884822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210831

RESUMO

Chinese herbal medicines offer a rich source of anti-cancer drugs. Differences between the pharmacology of Chinese herbal medicines and modern synthetic chemicals hinder the development of drugs derived from herbal products. To address this challenge, novel omics approaches including transcriptomics, proteomics, genomics, metabolomics, and microbiomics have been applied to dissect the pharmacological benefits of Chinese herbal medicines in cancer treatments. Numerous Chinese herbal medicines have shown potential anti-tumor effects on different gastrointestinal (GI) cancers while eliminating the side effects associated with conventional cancer therapies. The present study aimed to provide an overview of recent research focusing on Chinese herbal medicines in GI cancer treatment, based on omics approaches. This review also illustrates the potential utility of omics approaches in herbal-derived drug discovery. Omics approaches can precisely and efficiently reveal the key molecular targets and intracellular interaction networks of Chinese herbal medicines in GI cancer treatment. This study summarizes the application of different omics-based approaches in investigating the effects and mechanisms of Chinese herbal medicines in GI cancers. Future research directions are also proposed for this area of study.

12.
Nat Metab ; 4(10): 1306-1321, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192599

RESUMO

Extracellular vesicles play crucial roles in intercellular communication in the tumor microenvironment. Here we demonstrate that in hepatic fibrosis, TGF-ß stimulates the palmitoylation of hexokinase 1 (HK1) in hepatic stellate cells (HSCs), which facilitates the secretion of HK1 via large extracellular vesicles in a TSG101-dependent manner. The large extracellular vesicle HK1 is hijacked by hepatocellular carcinoma (HCC) cells, leading to accelerated glycolysis and HCC progression. In HSCs, the nuclear receptor Nur77 transcriptionally activates the expression of depalmitoylase ABHD17B to inhibit HK1 palmitoylation, consequently attenuating HK1 release. However, TGF-ß-activated Akt functionally represses Nur77 by inducing Nur77 phosphorylation and degradation. We identify the small molecule PDNPA that binds Nur77 to generate steric hindrance to block Akt targeting, thereby disrupting Akt-mediated Nur77 degradation and preserving Nur77 inhibition of HK1 release. Together, this study demonstrates an overlooked function of HK1 in HCC upon its release from HSCs and highlights PDNPA as a candidate compound for inhibiting HCC progression.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Estreladas do Fígado/metabolismo , Hexoquinase/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Microambiente Tumoral
13.
Chemistry ; 28(52): e202202650, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36066431

RESUMO

Invited for the cover of this issue is the group of Liang-Nian He at Nankai University. The image depicts that 2D ultrathin metal organic layers (MOLs) with bis-metallic catalytic sites make an efficient photocatalyst resulting in efficient and selective visible-light-driven CO2 reduction. Read the full text of the article at 10.1002/chem.202201767.

14.
ACS Omega ; 7(32): 28334-28341, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990425

RESUMO

Natural microtubule inhibitors, such as paclitaxel and ixabepilone, are key sources of novel medications, which have a considerable influence on anti-tumor chemotherapy. Natural product chemists have been encouraged to create novel methodologies for screening the new generation of microtubule inhibitors from the enormous natural product library. There have been major advancements in the use of artificial intelligence in medication discovery recently. Deep learning algorithms, in particular, have shown promise in terms of swiftly screening effective leads from huge compound libraries and producing novel compounds with desirable features. We used a deep neural network to search for potent ß-microtubule inhibitors in natural goods. Eleutherobin, bruceine D (BD), and phorbol 12-myristate 13-acetate (PMA) are three highly effective natural compounds that have been found as ß-microtubule inhibitors. In conclusion, this paper describes the use of deep learning to screen for effective ß-microtubule inhibitors. This research also demonstrates the promising possibility of employing deep learning to develop drugs from natural products for a wider range of disorders.

15.
Chemistry ; 28(52): e202201767, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35816126

RESUMO

As novel generated 2D materials, metal-organic layers (MOLs) have recently emerged as a potential platform for photocatalytic CO2 reduction reaction (PCO2 RR). Such 2D structures negate the blemish of low-density catalytic sites and low electron transmission efficiency on the surface of metal organic frameworks (MOFs), while retaining the advantage of low expenditure when using earth-abundant metal nodes and meritorious applicability in the PCO2 RR. Herein, it is reported that the 2D ultrathin layer material with bis-metallic catalytic sites (Ni-O metal node and the Ni-N metal site) from bidentate ligand 2,2'-bipyridine-5,5'-dicarboxylate (H2 bpydc) and nickel(II) remarkably boosts the visible light-driven PCO2 RR performance with a CO yield of 2400 mmol g-1 for 18 h and a selectivity up to 99 %. Consequently, the effects of morphology, catalytic sites and intrinsic properties on PCO2 RR efficiency have been investigated in detail. In this context, the ultrathin layer structure has been elucidated as the key point to facilitate electron transfer efficiency. Notably, the bis-metallic catalytic sites with reasonable distance between two adjacent metals presumably induce synergistic effect and offer a guiding ideology for further designing high performance photocatalysts.

16.
Mitochondrial DNA B Resour ; 7(6): 971-973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712543

RESUMO

We report the complete chloroplast genome (plastome) sequences of Pedicularis cephalantha (147,087 bp) and P. nigra (145,726 bp), endemic to southwestern China. Both plastomes have typical quadripartite structures with one large-single copy region, one small-single copy region, and two inverted repeat regions. Both plastome sequences contained 37 tRNA genes and eight rRNA genes, but they differed in the numbers of protein-coding genes: P. cephalantha had 76 functional genes and 12 pseudogenes while P. nigra had 74 functional genes and 13 pseudogenes. Phylogenetic analysis shows that P. cephalantha and P. nigra are closely related, then sister to P. oederi in the family Orobanchaceae.

17.
Plants (Basel) ; 11(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406849

RESUMO

Lettuce is an important vegetable cultivated worldwide, even in regions with highly saline soils. A large amount of research discusses the application of sulfur on the increase of antioxidation in plants. The powder from hoggery desulfurization tanks contained high amounts of sulfur and small amounts of other nutrients for plants. This powder can be added to liquid fertilizer to create high-sulfur liquid fertilizer (HSLF). This study observed the cell morphologies of lettuce root apices under salt stress after the application of HSLF. Lettuce plants were cultivated in hydroponic solutions containing one of two NaCl (0 and 40 mM) and three HSLF (0.0, 1.5, and 3.0 g L-1) concentrations. Salinity reduced the K+/Na+ ratio in the plant leaves; however, this reduction was smaller in the HSLF-treated plants. Except for phosphate and potassium, nutrient absorption is inhibited under conditions of high salinity. Using scanning electron microscopy, we observed apices more integrated on cell roots after increasing HSLF supplement under non-salt-stressed conditions. In addition, the cells were repaired after increasing the supplement of HSLF under the condition of 40 mM NaCl. Although salt stress reduced plant growth, the reductions were minimized in the HSLF-treated plants. The application of HSLF potentially alleviated salt injury in lettuce root apices and was probably associated with the improvement of phosphorus and potassium absorption and increasing K+/Na+ ratios in lettuce plants.

18.
J Am Chem Soc ; 143(47): 19834-19843, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788038

RESUMO

Construction of synthetic circuits that can artificially establish endogenous gene connections is essential to introduce new phenotypes for cellular behaviors. Given the diversity of endogenous genes, it lacks a general and easy-to-design toolbox to manipulate the genetic network. Here we present a type of self-assembly-induced RNA circuit that can directly build regulatory connections between endogenous genes. Inspired from the natural assembling process of guide RNA in the CRISPR/Cas9 complex, this design employs an independent trigger RNA strand to induce the formation of a ternary guide RNA assembly for functional control of CRISPR/Cas9. With this general principle, expressional regulations of endogenous genes can be controlled by totally independent endogenous small RNAs and mRNAs in E. coli via activatable CRISPR/Cas9 function. Moreover, the cellular phenotype of E. coli is successfully programmed with introduction of new gene connections. In addition, the functionality of this design is also verified in the mammalian system. This self-assembly-based RNA circuit exhibits a great flexibility and simplicity of design and provides a unique approach to build endogenous gene connections, which paves a broad way toward manipulation of cellular genetic networks.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Redes Reguladoras de Genes , RNA Guia de Cinetoplastídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Fenótipo , RNA Mensageiro/genética
19.
BMC Cancer ; 21(1): 1268, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819043

RESUMO

BACKGROUND: Radiomics may provide more objective and accurate predictions for extrahepatic cholangiocarcinoma (ECC). In this study, we developed radiomics models based on magnetic resonance imaging (MRI) and machine learning to preoperatively predict differentiation degree (DD) and lymph node metastasis (LNM) of ECC. METHODS: A group of 100 patients diagnosed with ECC was included. The ECC status of all patients was confirmed by pathology. A total of 1200 radiomics features were extracted from axial T1 weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), and apparent diffusion coefficient (ADC) images. A systematical framework considering combinations of five feature selection methods and ten machine learning classification algorithms (classifiers) was developed and investigated. The predictive capabilities for DD and LNM were evaluated in terms of area under precision recall curve (AUPRC), area under the receiver operating characteristic (ROC) curve (AUC), negative predictive value (NPV), accuracy (ACC), sensitivity, and specificity. The prediction performance among models was statistically compared using DeLong test. RESULTS: For DD prediction, the feature selection method joint mutual information (JMI) and Bagging Classifier achieved the best performance (AUPRC = 0.65, AUC = 0.90 (95% CI 0.75-1.00), ACC = 0.85 (95% CI 0.69-1.00), sensitivity = 0.75 (95% CI 0.30-0.95), and specificity = 0.88 (95% CI 0.64-0.97)), and the radiomics signature was composed of 5 selected features. For LNM prediction, the feature selection method minimum redundancy maximum relevance and classifier eXtreme Gradient Boosting achieved the best performance (AUPRC = 0.95, AUC = 0.98 (95% CI 0.94-1.00), ACC = 0.90 (95% CI 0.77-1.00), sensitivity = 0.75 (95% CI 0.30-0.95), and specificity = 0.94 (95% CI 0.72-0.99)), and the radiomics signature was composed of 30 selected features. However, these two chosen models were not significantly different to other models of higher AUC values in DeLong test, though they were significantly different to most of all models. CONCLUSION: MRI radiomics analysis based on machine learning demonstrated good predictive accuracies for DD and LNM of ECC. This shed new light on the noninvasive diagnosis of ECC.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Colangiocarcinoma/diagnóstico por imagem , Metástase Linfática/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Adenocarcinoma/patologia , Adenocarcinoma/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Área Sob a Curva , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Colangiocarcinoma/secundário , Feminino , Humanos , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade
20.
Cancer Manag Res ; 13: 7851-7858, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675679

RESUMO

PURPOSE: To explore the clinical significance of plasma pyruvate kinase M2 (PKM2) in assessing the incidence and prognosis of acute leukemia. METHODS: Plasma samples from 56 acute myeloid leukemia (AML) patients, 40 acute lymphoblastic leukemia (ALL) patients, and 66 plasma samples from healthy individuals were collected. The level of plasma PKM2 was detected by enzyme-linked immunosorbent assay. The clinical significance of PKM2 in acute leukemia was assessed by analyzing receiver operating characteristic and survival curves. RESULTS: The plasma levels of PKM2 in AML or ALL patients were significantly higher than those in healthy individuals, respectively. PKM2 can be used as a potential diagnostic index with the AUC of 0.827 for AML and 0.837 for ALL. The level of plasma PKM2 in ALL patients with a BCR/ABL-positive genotype was significantly higher than that in patients with a BCR/ABL-negative genotype (p<0.05). The event-free survival and the overall survival of acute leukemia patients with higher PKM2 expression was worse than those with lower PKM2 expression. CONCLUSION: This study showed that higher levels of PKM2 was negatively correlated with the prognosis of acute leukemia. Therefore, PKM2 can be used as a potential index to assess the incidence and prognosis of acute leukemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...