Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 203: 116474, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762936

RESUMO

The prevalence of plastics in the oceans has significantly intensified microplastic pollution, contributing to broader marine secondary pollution issues. This paper examines how plastic structure affects the aging characteristics of plastics and the release of metal ions, to better understand this secondary source of marine pollution. This study simulate the photoaging of plastics in natural environments, focusing on aliphatic and aromatic polymers. The results showed that the photodegradation degree was higher for aliphatic than aromatic polymers. All polymers contained thirteen detectable metals, with their release increasing over time due to photoaging, The release dynamics of these metal ions correlated more strongly with the level of polymer degradation rather than with the polymer structure itself, adhering to a second-order kinetic model driven by surface and intraparticle diffusion processes. The results will help control and treat marine plastic pollution.


Assuntos
Metais , Plásticos , Polímeros , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Polímeros/química , Metais/química , Metais/análise , Fotólise , Monitoramento Ambiental
2.
Appl Environ Microbiol ; 90(4): e0009524, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38497640

RESUMO

Horizontal gene transfer, facilitated by mobile genetic elements (MGEs), is an adaptive evolutionary process that contributes to the evolution of bacterial populations and infectious diseases. A variety of MGEs not only can integrate into the bacterial genome but also can survive or even replicate like plasmids in the cytoplasm, thus requiring precise and complete removal for studying their strategies in benefiting host cells. Existing methods for MGE removal, such as homologous recombination-based deletion and excisionase-based methods, have limitations in effectively eliminating certain MGEs. To overcome these limitations, we developed the Cas9-NE method, which combines the CRISPR/Cas9 system with the natural excision of MGEs. In this approach, a specialized single guide RNA (sgRNA) element is designed with a 20-nucleotide region that pairs with the MGE sequence. This sgRNA is expressed from a plasmid that also carries the Cas9 gene. By utilizing the Cas9-NE method, both the integrative and circular forms of MGEs can be precisely and completely eliminated through Cas9 cleavage, generating MGE-removed cells. We have successfully applied the Cas9-NE method to remove four representative MGEs, including plasmids, prophages, and genomic islands, from Vibrio strains. This new approach not only enables various investigations on MGEs but also has significant implications for the rapid generation of strains for commercial purposes.IMPORTANCEMobile genetic elements (MGEs) are of utmost importance for bacterial adaptation and pathogenicity, existing in various forms and multiple copies within bacterial cells. Integrated MGEs play dual roles in bacterial hosts, enhancing the fitness of the host by delivering cargo genes and potentially modifying the bacterial genome through the integration/excision process. This process can lead to alterations in promoters or coding sequences or even gene disruptions at integration sites, influencing the physiological functions of host bacteria. Here, we developed a new approach called Cas9-NE, allowing them to maintain the natural sequence changes associated with MGE excision. Cas9-NE allows the one-step removal of integrated and circular MGEs, addressing the challenge of eliminating various MGE forms efficiently. This approach simplifies MGE elimination in bacteria, expediting research on MGEs.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Bactérias/genética , Ilhas Genômicas , Transferência Genética Horizontal , Plasmídeos/genética , Sequências Repetitivas Dispersas
3.
Sci Rep ; 14(1): 6390, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493212

RESUMO

The immune infiltration profiles of the tumor microenvironment have effects on the prognosis of head and neck squamous cell carcinoma (HNSCC). Whereas, HNSCC is a heterogeneous group of tumors, but past work has not taken this into consideration. Herein, we investigate the associations between survival and the function of immune cells in different tumorigenic sites of HNSCC. 1149 samples of HNSCC were collected from publicly accessible databases. Based on gene expression data, CIBERSORTx was applied to determine the proportion of 22 immune cell subpopulations. In the Cox regression model, the associations between overall survival, disease-free survival, and immune cells were examined, modeling gene expression and immune cell proportion as quartiles. Consensus cluster analysis was utilized to uncover immune infiltration profiles. Regardless of tumor sites, CD8+ T cells and activated CD4 memory T cells were associated with favorable survival, while eosinophils were the opposite. The survival of the hypopharynx, oral cavity, and larynx subsites was somewhat affected by immune cells, while the survival of the oropharynx subsite potentially was the most impacted. High expression of TIGIT, CIITA, and CXCR6 was linked to better survival, mainly in the oropharynx subsite. Immune cell clusters with four distinct survival profiles were discovered, of which the cluster with a high CD8+ T cell content had a better prognosis. The immune-infiltration pattern is related to the survival of HNSCC to varying degrees depending on the tumor sites; forthcoming studies into immune-mediated infiltration profiles will lay the groundwork for treating HNSCC with precision therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estudos Retrospectivos , Prognóstico , Linfócitos T CD8-Positivos , Microambiente Tumoral
4.
Nat Commun ; 14(1): 7421, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973916

RESUMO

The gut microbiota may have an effect on the therapeutic resistance and toxicity of immune checkpoint inhibitors (ICIs). However, the associations between the highly variable genomes of gut bacteria and the effectiveness of ICIs remain unclear, despite the fact that merely a few gene mutations between similar bacterial strains may cause significant phenotypic variations. Here, using datasets from the gut microbiome of 996 patients from seven clinical trials, we systematically identify microbial genomic structural variants (SVs) using SGV-Finder. The associations between SVs and response, progression-free survival, overall survival, and immune-related adverse events are systematically explored by metagenome-wide association analysis and replicated in different cohorts. Associated SVs are located in multiple species, including Akkermansia muciniphila, Dorea formicigenerans, and Bacteroides caccae. We find genes that encode enzymes that participate in glucose metabolism be harbored in these associated regions. This work uncovers a nascent layer of gut microbiome heterogeneity that is correlated with hosts' prognosis following ICI treatment and represents an advance in our knowledge of the intricate relationships between microbiota and tumor immunotherapy.


Assuntos
Microbioma Gastrointestinal , Microbiota , Neoplasias , Humanos , Microbioma Gastrointestinal/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microbiota/genética , Metagenoma , Bactérias/genética , Neoplasias/genética
5.
Microorganisms ; 11(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004737

RESUMO

Many bacteria use the second messenger c-di-GMP to regulate exopolysaccharide production, biofilm formation, motility, virulence, and other phenotypes. The c-di-GMP level is controlled by the complex network of diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that synthesize and degrade c-di-GMP. In addition to chromosomally encoded DGCs, increasing numbers of DGCs were found to be located on mobile genetic elements. Whether these mobile genetic element-encoded DGCs can modulate the physiological phenotypes in recipient bacteria after horizontal gene transfer should be investigated. In our previous study, a genomic island encoding three DGC proteins (Dgc137, Dgc139, and Dgc140) was characterized in Vibrio alginolyticus isolated from the gastric cavity of the coral Galaxea fascicularis. Here, the effect of the three DGCs in four Pseudoalteromonas strains isolated from coral Galaxea fascicularis and other marine environments was explored. The results showed that when dgc137 is present rather than the three DGC genes, it obviously modulates biofilm formation and bacterial motility in these Pseudoalteromonas strains. Our findings implied that mobile genetic element-encoded DGC could regulate the physiological status of neighboring bacteria in a microbial community by modulating the c-di-GMP level after horizontal gene transfer.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37906413

RESUMO

The lipopeptides produced by Bacillus subtilis have anti-cancer potential. We had previously identified a secondary metabolite of B. subtilis strain Z15 (BS-Z15), which has an operon that regulates lipopeptide synthesis, and also demonstrated that the fermentation products of this strain exerted antioxidant and pro-immune effects. The purpose of this study was to investigate in vitro and in vivo the anticancer effects of BS-Z15 secondary metabolites (BS-Z15 SMs) on hepatocellular carcinoma (HCC) cells. BS-Z15 SMs significantly inhibited H22 cell-derived murine xenograft tumor growth without any systemic toxicity. In addition, BS-Z15 SMs decreased the viability of H22 cells and BEL-7404 cells in vitro with respective IC50 values of 33.83 and 27.26 µg/mL. Consistent with this, BS-Z15 SMs induced apoptosis and G0/G1 phase arrest in the BEL-7404 cells, and the mitochondrial membrane potential was also significantly reduced in a dose-dependent manner. Mechanistically, BS-Z15 SMs upregulated the pro-apoptotic p53, Bax, cytochrome C, and cleaved-caspase-3/9 proteins and downregulated the anti-apoptotic Bcl-2. These findings suggest that the induction of apoptosis in HCC cells by BS-Z15 SMs may be related to the mitochondrial pathway. Thus, the secondary metabolites of B. subtilis strain Z15 are promising to become new anti-cancer drugs for the clinical treatment of liver cancer.

7.
Microb Genom ; 9(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37850970

RESUMO

Bacterial deficiencies in the DNA repair system can produce mutator strains that promote adaptive microevolution. However, the role of mutator strains in marine Pseudoalteromonas, capable of generating various gain-of-function genetic variants within biofilms, remains largely unknown. In this study, inactivation of mutS in Pseudoalteromonas lipolytica conferred an approximately 100-fold increased resistance to various antibiotics, including ciprofloxacin, rifampicin and aminoglycoside. Furthermore, the mutator of P. lipolytica generated variants that displayed enhanced biofilm formation but reduced swimming motility, indicating a high phenotypic diversity within the ΔmutS population. Additionally, we observed a significant production rate of approximately 50 % for the translucent variants, which play important roles in biofilm formation, when the ΔmutS strain was cultured on agar plates or under shaking conditions. Using whole-genome deep-sequencing combined with genetic manipulation, we demonstrated that point mutations in AT00_17115 within the capsular biosynthesis cluster were responsible for the generation of translucent variants in the ΔmutS subpopulation, while mutations in flagellar genes fliI and flgP led to a decrease in swimming motility. Collectively, this study reveals a specific mutator-driven evolution in P. lipolytica, characterized by substantial genetic and phenotypic diversification, thereby offering a reservoir of genetic attributes associated with microbial fitness.


Assuntos
Pseudoalteromonas , Pseudoalteromonas/genética , Mutação , Biofilmes , Antibacterianos
8.
Carbohydr Polym ; 322: 121361, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839827

RESUMO

The target of this study is to gain a deeper understanding of the micro-dissolution process of cellulose in alkaline aqueous solutions and to develop a novel method for extracting cellulose nanofibrils (CNFs). Herein, the dissolution process of cellulose in alkaline aqueous solutions will be controlled by varying the temperature, and the undissolved cellulose will be analyzed to reveal the microscopic dissolution process of cellulose, and a novel process for extracting cellulose nanofibrils (CNFs) will be developed based on the findings. The crystalline structure of cellulose was gradually disrupted as the dissolution progressed, and the crystal form of cellulose changed gradually from cellulose I to cellulose II during the dissolution process, while all undissolved cellulose crystals remained as cellulose I. Cellulose, after its structure is disrupted during the dissolution process, will inevitably decompose into CNFs, and the microscopic dissolution process of cellulose follows a "top-down" dissolution sequence. The CNFs extraction method developed in this study can extract CNFs with high yield (>60 %) in a stable manner, as well as narrow particle size distribution, high crystallinity (>77 %), and good thermal stability. This study enhances the comprehension of the dissolution process of cellulose and paves a possible way for industrialization of CNFs production.

9.
Front Microbiol ; 14: 1138751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152757

RESUMO

Green sulfur bacteria (GSB) are a distinct group of anoxygenic phototrophic bacteria that are found in many ecological niches. Prosthecochloris, a marine representative genus of GSB, was found to be dominant in some coral skeletons. However, how coral-associated Prosthecochloris (CAP) adapts to diurnal changing microenvironments in coral skeletons is still poorly understood. In this study, three Prosthecochloris genomes were obtained through enrichment culture from the skeleton of the stony coral Galaxea fascicularis. These divergent three genomes belonged to Prosthecochloris marina and two genomes were circular. Comparative genomic analysis showed that between the CAP and non-CAP clades, CAP genomes possess specialized metabolic capacities (CO oxidation, CO2 hydration and sulfur oxidation), gas vesicles (vertical migration in coral skeletons), and cbb 3-type cytochrome c oxidases (oxygen tolerance and gene regulation) to adapt to the microenvironments of coral skeletons. Within the CAP clade, variable polysaccharide synthesis gene clusters and phage defense systems may endow bacteria with differential cell surface structures and phage susceptibility, driving strain-level evolution. Furthermore, mobile genetic elements (MGEs) or evidence of horizontal gene transfer (HGT) were found in most of the genomic loci containing the above genes, suggesting that MGEs play an important role in the evolutionary diversification between CAP and non-CAP strains and within CAP clade strains. Our results provide insight into the adaptive strategy and population evolution of endolithic Prosthecochloris strains in coral skeletons.

10.
Talanta ; 257: 124367, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841016

RESUMO

Hyaluronidase (HAase) is a potential tumor biomarker for diseases of the digestive tract and nervous system, the development of simple and sensitive techniques for HAase determination is urgent needed. Gold nanorods (Au NRs) can be etched by H2O2 with high efficiency and display color changing. In this work, a HAase-responsive hydrogel system had been designed and the amount of H2O2 spilled from the system had a close relationship with the amount of HAase, then the spilled H2O2 had been applied to etch Au NRs. The color change of the solution was used to realize semi-quantitative determination of HAase. Furthermore, the longitudinal peak shift of Au NRs had a linear correlation with the concentration of HAase in the range of 10-60 U/mL (within 40 min) and the limit of detection (LOD) was 3.8 U/mL (S/N = 3), which can be used to realize accurate quantitative analysis of HAase. The proposed method has been applied to monitor HAase in serum of pancreatic cancer patients with satisfied results.


Assuntos
Técnicas Biossensoriais , Nanotubos , Humanos , Hialuronoglucosaminidase , Peróxido de Hidrogênio , Ouro , Hidrogéis , Técnicas Biossensoriais/métodos
11.
Work Employ Soc ; 37(1): 157-175, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36820233

RESUMO

During the COVID-19 pandemic, millions of workers globally have been forced to work from home. Empirical data from Chinese cities in the Hubei province reveal work productivity decreased among many respondents working from home in 2020, primarily due to family interference with work. Such interference stems not only from the domain of daily life but also from other family members' e-working and e-learning. Conversely, respondents' work interferes with family; thus, interference operates bi-directionally. This article proposes an analytical framework of work-family interference along three dimensions: work-daily life, work-work, work-study, and each dimension can be understood through four distinct aspects: temporality, physicality, vocality, digitality. Remote workers encounter 'assemblages of work-family interference', consisting of a heterogeneous mixture of these dimensions and aspects. Furthermore, some factors (e.g., living patterns, work culture, digital infrastructure) constrain effective work-family boundary management among urban households.

12.
Voluntas ; 34(2): 239-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35035120

RESUMO

Based on grounded theory, the present study summarizes the transcripts from 32 in-depth interviews with Chinese community emergency volunteers to uncover the attributions of community emergency volunteering in China during the COVID-19 pandemic. Community emergency volunteering in China is affected by four main factors: inner awareness, the external environment, national policy, and publicity and advocacy. Among these factors, inner awareness and the external environment are the internal and social psychological attributions, respectively, of emergency volunteering. In addition, publicity and advocacy also play a role in both inner awareness and the external environment and, together with national policies, act on community emergency volunteering. Finally, the high level of trust of some volunteers in their ruling party and government is a deep-seated driving force of their volunteering, a factor that has not been emphasized in past studies.

13.
Biomed Pharmacother ; 155: 113787, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271565

RESUMO

Tumor-infiltrating immune cells (TIICs) play a critical role in breast cancer (BC) prognosis, but little is known regarding the efficacy of endocrine therapy in patients with ER-positive BC with diverse immunological phenotypes. To investigate whether TIICs affect survival after endocrine therapy in patients with different BC molecular subtypes, data were gathered from six studies totaling 1900 samples. CIBERSORTx was used to analyze the invasion of 22 immune cell subpopulations using a bulk gene expression profile. The relationships of immune-related metagenes and immune cell subsets with survival (distant metastasis-free survival, relapse-free survival, and overall survival) were studied using Cox regression models with cell proportions modeled in quartiles. The immune score and IGHG3 and LCK gene activity were linked to a better prognosis. Among the immune cells, monocytes, resting CD4+ memory T cells and plasma cells were correlated with prolonged survival, while neutrophils, Tregs, M0 macrophages, and M2 macrophages were associated with an unfavorable prognosis. Similar effects were reported for the luminal A subtype. In the luminal B subtype, γδ T cells and eosinophils were favorable prognostic factors. Covariate-adjusted multivariate Cox regression analysis revealed that high proportions of resting CD4+ memory T cells and resting dendritic cells were correlated with a good prognosis. Meanwhile, neutrophils were associated with an unfavorable prognosis. Understanding how monocytes and macrophages interact in the tumor microenvironment may be a promising study focus. Comprehensive research on the cellular immune response in tumors could help facilitate the development of new treatments.


Assuntos
Linfócitos do Interstício Tumoral , Recidiva Local de Neoplasia , Humanos , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral , Macrófagos/metabolismo , Linfócitos T CD4-Positivos
14.
ISME J ; 16(9): 2220-2229, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760883

RESUMO

Intraspecies diversification and niche adaptation by members of the Vibrio genus, one of the most diverse bacterial genera, is thought to be driven by horizontal gene transfer. However, the intrinsic driving force of Vibrio species diversification is much less explored. Here, by studying two dominant and competing cohabitants of the gastric cavity of corals, we found that a phenotype influencing island (named VPII) in Vibrio alginolyticus was eliminated upon coculturing with Pseudoalteromonas. The loss of VPII reduced the biofilm formation and phage resistance, but activated motility, which may allow V. alginolyticus to expand to other niches. Mechanistically, we discovered that the excision of this island is mediated by the cooperation of two unrelated mobile genetic elements harbored in Pseudoalteromonas spp., an integrative and conjugative element (ICE) and a mobilizable genomic island (MGI). More importantly, these mobile genetic elements are widespread in cohabitating Gram-negative bacteria. Altogether, we discovered a new strategy by which the mobilome is employed by competitors to increase the genomic plasticity of rivals.


Assuntos
Antozoários , Pseudoalteromonas , Vibrio , Animais , Antozoários/genética , Conjugação Genética , Elementos de DNA Transponíveis , Transferência Genética Horizontal , Ilhas Genômicas , Genômica , Pseudoalteromonas/genética , Vibrio/genética
15.
Nat Ecol Evol ; 6(8): 1132-1144, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35773344

RESUMO

The coral reef microbiome is central to reef health and resilience. Competitive interactions between opportunistic coral pathogens and other commensal microbes affect the health of coral. Despite great advances over the years in sequencing-based microbial profiling of healthy and diseased coral, the molecular mechanism underlying colonization competition has been much less explored. In this study, by examining the culturable bacteria inhabiting the gastric cavity of healthy Galaxea fascicularis, a scleractinian coral, we found that temperate phages played a major role in mediating colonization competition in the coral microbiota. Specifically, the non-toxigenic Vibrio sp. inhabiting the healthy coral had a much higher colonization capacity than the coral pathogen Vibrio coralliilyticus, yet this advantage was diminished by the latter killing the former. Pathogen-encoded LodAB, which produces hydrogen peroxide, triggers the lytic cycle of prophage in the non-toxicogenic Vibrio sp. Importantly, V. coralliilyticus could outcompete other coral symbiotic bacteria (for example, Endozoicomonas sp.) through LodAB-dependent prophage induction. Overall, we reveal that LodAB can be used by pathogens as an important weapon to gain a competitive advantage over lysogenic competitors when colonizing corals.


Assuntos
Antozoários , Vibrio , Animais , Recifes de Corais , Ativação Viral
16.
Front Microbiol ; 13: 858857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387082

RESUMO

Composite genomic islands (GIs) are useful models for studying GI evolution if they can revert into the previous components. In this study, CGI48-a 48,135-bp native composite GI that carries GI21, whose homologies specifically integrated in the conserved yicC gene-were identified in Shewanella putrefaciens CN-32. CGI48 was integrated into the tRNATrp gene, which is a conserved gene locus for the integration of genomic islands in Shewanella. Upon expressing integrase and excisionase, CGI48 and GI21 are excised from chromosomes via site-specific recombination. The shorter attachment sites of GI21 facilitated the capture of GI21 into CGI48. Moreover, GI21 encodes a functional HipAB toxin-antitoxin system, thus contributing to the maintenance of CGI48 in the host bacteria. This study provides new insights into GI evolution by performing the excision process of the inserting GI and improves our understanding of the maintenance mechanisms of composite GI.

17.
Environ Microbiol ; 24(9): 4285-4298, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35384225

RESUMO

Filamentous prophages in Pseudomonas aeruginosa PAO1 are converted to superinfective phage virions during biofilm development. Superinfection exclusion is necessary for the development of resistance against superinfective phage virions in host cells. However, the molecular mechanisms underlying the exclusion of superinfective Pf phages are unknown. In this study, we found that filamentous prophage-encoded structural proteins allow exclusion of superinfective Pf phages by interfering with type IV pilus (T4P) function. Specifically, the phage minor capsid protein pVII inhibits Pf phage adsorption by interacting with PilC and PilJ of T4P, and overproduction of pVII completely abrogates twitching motility. The minor capsid protein pIII provides partial superinfection exclusion and interacts with the PilJ and TolR/TolA proteins. Furthermore, pVII provides full host protection against infection by pilus-dependent lytic phages, and pIII provides partial protection against infection by pilus-independent lytic phages. Considering that filamentous prophages are common in clinical Pseudomonas isolates and their induction is often activated during biofilm formation, this study suggests the need to rethink the strategy of using lytic phages to treat P. aeruginosa biofilm-related infections.


Assuntos
Bacteriófagos , Superinfecção , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Humanos , Prófagos/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
18.
Front Microbiol ; 13: 797197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295294

RESUMO

Many Pseudoalteromonas species are dominant biofilm-forming Gammaproteobacteria in the ocean. The formation of Pseudoalteromonas biofilms is often accompanied by the occurrence of variants with different colony morphologies that may exhibit increased marine antifouling or anticorrosion activities. However, the genetic basis of the occurrence of these variants remains largely unexplored. In this study, we identified that wrinkled variants of P. lipolytica mainly arose due to mutations in the AT00_08765, a wspF-like gene, that are associated with decreased swimming motility and increased cellulose production. Moreover, we found that the spontaneous mutation in flhA, encoding a flagellar biosynthesis protein, also caused a wrinkled colony morphology that is associated with cellulose overproduction, indicating that flhA plays a dual role in controlling flagellar assembly and polysaccharide production in P. lipolytica. Investigation of wrinkled variants harboring spontaneous mutation in dgcB, encoding a GGDEF domain protein, also demonstrated dgcB plays an important role in regulating cellulose production and swimming motility. In addition, by screening the suppressor of the AT00_08765 variant strain, we also identified that the spontaneous mutation in cheR and bcsC directly abolished the wrinkled phenotype of the AT00_08765 variant strain, suggesting that the chemosensory signaling transduction and cellulose production are crucial for the determination of the wrinkled phenotype in P. lipolytica. Taken together, this study provides insights into the genetic variation within biofilms of P. lipolytica.

20.
Health Sociol Rev ; 31(3): 215-231, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34161186

RESUMO

Globally, the use of e-health has accelerated dramatically during the coronavirus pandemic. Based on both quantitative and qualitative data collected in China's Hubei province (i.e. the first epicentre of COVID-19), this research explores how the pandemic influences the practices of e-health from the perspective of users. Through analysis of 1,033 surveys and 14 in-depth interviews, we find that e-health has played a crucial role in residents' healthcare during the COVID-19 pandemic. Certain external factors influence the choice of digital health, including the high risk of infection outdoors, the shutting down of transport systems, and dysfunctional healthcare facilities that neglect non-COVID-19 patients' clinical demands. Against this backdrop, we argue digital health acts as a functional equivalent to traditional medical treatment and has largely satisfied patients and users in the crisis period. Additionally, the COVID-19 pandemic has unintentionally sped up the diffusion of digital medicine over the long term as respondents expressed their willingness to continue use of e-health in the post-COVID-19 phase. However, we assert that despite the increasing use of e-health, it cannot fully substitute traditional offline treatment. Thus, we suggest a combination of online and offline healthcare will be more commonly practiced in the future.


Assuntos
COVID-19 , Telemedicina , COVID-19/epidemiologia , China/epidemiologia , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...