Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2404120, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727702

RESUMO

This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.

2.
ACS Appl Mater Interfaces ; 16(9): 12018-12032, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394675

RESUMO

Nonantibiotic approaches must be developed to kill pathogenic bacteria and ensure that clinicians have a means to treat wounds that are infected by multidrug-resistant bacteria. This study prepared matchstick-like Ag2S-ZnS heteronanostructures (HNSs). Their hydrophobic surfactants were then replaced with hydrophilic poly(ethylene glycol) (PEG) and thioglycolic acid (TGA) through the ligand exchange method, and this was followed by ascorbic acid (AA) conjugation with TGA through esterification, yielding well-dispersed PEGylated Ag2S-ZnS@TGA-AA HNSs. The ZnS component of the HNSs has innate semiconductivity, enabling the generation of electron-hole pairs upon irradiation with a light of wavelength 320 nm. These separate charges can react with oxygen and water around the HNSs to produce reactive oxygen species. Moreover, some holes can oxidize the surface-grafted AA to produce protons, decreasing the local pH and resulting in the corrosion of Ag2S, which releases silver ions. In evaluation tests, the PEGylated Ag2S-ZnS@TGA-AA had synergistic antibacterial ability and inhibited Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA). Additionally, MRSA-infected wounds treated with a single dose of PEGylated Ag2S-ZnS@TGA-AA HNSs under light exposure healed significantly more quickly than those not treated, a result attributable to the HNSs' excellent antibacterial and Bohr effects.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Humanos , Antibacterianos/farmacologia , Cicatrização , Polietilenoglicóis/farmacologia , Concentração de Íons de Hidrogênio
3.
Nat Commun ; 14(1): 4709, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543632

RESUMO

Chemodynamic therapy (CDT) uses the Fenton or Fenton-like reaction to yield toxic ‧OH following H2O2 → ‧OH for tumoral therapy. Unfortunately, H2O2 is often taken from the limited endogenous supply of H2O2 in cancer cells. A water oxidation CoFe Prussian blue (CFPB) nanoframes is presented to provide sustained, external energy-free self-supply of ‧OH from H2O to process CDT and/or photothermal therapy (PTT). Unexpectedly, the as-prepared CFPB nanocubes with no near-infrared (NIR) absorption is transformed into CFPB nanoframes with NIR absorption due to the increased Fe3+-N ≡ C-Fe2+ composition through the proposed proton-induced metal replacement reactions. Surprisingly, both the CFPB nanocubes and nanoframes provide for the self-supply of O2, H2O2, and ‧OH from H2O, with the nanoframe outperforming in the production of ‧OH. Simulation analysis indicates separated active sites in catalyzation of water oxidation, oxygen reduction, and Fenton-like reactions from CFPB. The liposome-covered CFPB nanoframes prepared for controllable water-driven CDT for male tumoral mice treatments.


Assuntos
Nanopartículas , Neoplasias , Masculino , Animais , Camundongos , Domínio Catalítico , Peróxido de Hidrogênio , Catálise , Água , Linhagem Celular Tumoral
4.
Membranes (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34832047

RESUMO

Biogenic microvesicles (MVs) play a pivotal role in intercellular signal communication, thus initiating critical biological responses such as the proliferation of cancer cells, gene and protein transport, and chemo-drug resistance. In addition, they have been recognized as having great potential in drug delivery applications. However, the productivity of biologically produced MVs is not sufficient for clinical applications. In this study, synthetic poly(lactic-co-glycolic acid) (PLGA) MVs were prepared via a double emulsion method. The PLGA MVs had a biogenic MV-mimic vesicular structure with a hydrophilic core/surface and hydrophobic interior of the shell, showing great potential for drug delivery. We successfully embedded hydrophobic iron carbonyl (IC), a carbon monoxide (CO) donor, in the PLGA shell region, enabling the delivery of IC in an aqueous solution. Because of the intrinsic properties of PLGA, it was susceptible to temperature, and the MVs could easily collapse in a warm environment, leading to the decomposition of IC into CO. The in vitro result indicated that the cell viability of A549 lung carcinoma cells significantly decreased to 14% after treatment with IC-loaded PLGA MVs for 24 h, suggesting that these synthetic PLGA MVs constitute an excellent drug delivery platform.

5.
ACS Nano ; 13(4): 4290-4301, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30883107

RESUMO

A deficiency of nitric oxide (NO) supply has been found to impair wound healing. The exogenous topical delivery of NO is a promising approach to enhance vasodilation and stimulate angiogenesis and collagen deposition. In this study, the CN groups on the surface of Prussian blue (PB) nanocubes were carefully reduced to -CH2-NH2 to conjugate with COOH group of hemin consisting of a Fe-porphyrin structure with strong affinity toward NO. Accordingly, the NO gas was able to coordinate to hemin-modified PB nanocubes. The hemin-modified PB carrying NO (PB-NO) can be responsible to near-infrared (NIR) light (808 nm) exposure to induce the thermo-induced liberation of NO based on the light-to-heat transformation property of PB nanocubes. The NO supply on the incisional wound sites can be readily topically dropped the colloidal solution of PB-NO for receiving NIR light irradiation. The enhanced blood flow was in a controllable manner whenever the wound sites containing PB-NO received NIR light irradiation. The promotion of blood perfusion following the on-demand multidelivery of NO has effectively facilitated the process of wound closure to enhance angiogensis and collagen deposition.


Assuntos
Coloides/química , Hemina/química , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Doadores de Óxido Nítrico/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Colágeno/metabolismo , Preparações de Ação Retardada/química , Feminino , Ferrocianetos/química , Humanos , Luz , Camundongos Endogâmicos C57BL , Microcirculação/efeitos dos fármacos , Óxido Nítrico/administração & dosagem , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...