Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100937, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693694

RESUMO

The crosstalk between clathrin-mediated endocytosis (CME) and autophagy pathway has been reported in mammals. However, the interconnection of CME with autophagy has not been established in plants. In this report, we showed that Arabidopsis CLATHRIN LIGHT CHAIN (CLC) subunit 2 and 3 double mutant, clc2-1 clc3-1, phenocopied the Arabidopsis AUTOPHAGY-RELATED GENE (ATG) mutants both in auto-immunity and nutrient sensitivity. Accordingly, the autophagy pathway was significantly compromised in the clc2-1 clc3-1 mutant. Interestingly, we demonstrated with multiple assays that CLC2 directly interacted with ATG8h/ATG8i in a domain-specific manner. As expected, both GFP-ATG8h/GFP-ATG8i and CLC2-GFP were subjected to autophagic degradation and the degradation of GFP-ATG8h was significantly reduced in the clc2-1 clc3-1 mutant. Notably, simultaneously knocking out ATG8h and ATG8i by the CRISPR/CAS9 resulted in an enhanced resistance against Golovinomyces cichoracearum, supporting the functional relevance of the CLC2-ATG8h/8i interactions. In conclusion, our results uncovered a link between the function of CLCs and the autophagy pathway in Arabidopsis.

2.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003698

RESUMO

Autophagy plays a critical role in nutrient recycling/re-utilizing under nutrient deprivation conditions. However, the role of autophagy in soybeans has not been intensively investigated. In this study, the Autophay-related gene 7 (ATG7) gene in soybeans (referred to as GmATG7) was silenced using a virus-induced gene silencing approach mediated by Bean pod mottle virus (BPMV). Our results showed that ATG8 proteins were highly accumulated in the dark-treated leaves of the GmATG7-silenced plants relative to the vector control leaves (BPMV-0), which is indicative of an impaired autophagy pathway. Consistent with the impaired autophagy, the dark-treated GmATG7-silenced leaves displayed an accelerated senescence phenotype, which was not seen on the dark-treated BPMV-0 leaves. In addition, the accumulation levels of both H2O2 and salicylic acid (SA) were significantly induced in the GmATG7-silenced plants compared with the BPMV-0 plants, indicating an activated immunity. Consistently, the GmATG7-silenced plants were more resistant against both Pseudomonas syringae pv. glycinea (Psg) and Soybean mosaic virus (SMV) compared with the BPMV-0 plants. However, the activated immunity in the GmATG7-silenced plant was not dependent upon the activation of MPK3/MPK6. Collectively, our results demonstrated that the function of GmATG7 is indispensable for autophagy in soybeans, and the activated immunity in the GmATG7-silenced plant is a result of impaired autophagy.


Assuntos
Proteína 7 Relacionada à Autofagia , Glycine max , Proteínas de Plantas , Resistência à Doença , Inativação Gênica , Peróxido de Hidrogênio , Doenças das Plantas , Glycine max/imunologia , Glycine max/metabolismo , Glycine max/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo
3.
Front Psychiatry ; 14: 1131769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229392

RESUMO

Unique large-scale cooperation and fairness norms are essential to human society, but the emergence of prosocial behaviors is elusive. The fact that heterogeneous social networks prevail raised a hypothesis that heterogeneous networks facilitate fairness and cooperation. However, the hypothesis has not been validated experimentally, and little is known about the evolutionary psychological basis of cooperation and fairness in human networks. Fortunately, research about oxytocin, a neuropeptide, may provide novel ideas for confirming the hypothesis. Recent oxytocin-modulated network game experiments observed that intranasal administration of oxytocin to a few central individuals significantly increases global fairness and cooperation. Here, based on the experimental phenomena and data, we show a joint effect of social preference and network heterogeneity on promoting prosocial behaviors by building evolutionary game models. In the network ultimatum game and the prisoner's dilemma game with punishment, inequality aversion can lead to the spread of costly punishment for selfish and unfair behaviors. This effect is initiated by oxytocin, then amplified via influential nodes, and finally promotes global cooperation and fairness. In contrast, in the network trust game, oxytocin increases trust and altruism, but these effects are confined locally. These results uncover general oxytocin-initiated mechanisms underpinning fairness and cooperation in human networks.

4.
J Neurosci ; 42(30): 5930-5943, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760532

RESUMO

Human society operates on large-scale cooperation. However, individual differences in cooperativeness and incentives to free ride on others' cooperation make large-scale cooperation fragile and can lead to reduced social welfare. Thus, how individual cooperation spreads through human social networks remains puzzling from ecological, evolutionary, and societal perspectives. Here, we identify oxytocin and costly punishment as biobehavioral mechanisms that facilitate the propagation of cooperation in social networks. In three laboratory experiments (n = 870 human participants: 373 males, 497 females), individuals were embedded in heterogeneous networks and made repeated decisions with feedback in games of trust (n = 342), ultimatum bargaining (n = 324), and prisoner's dilemma with punishment (n = 204). In each heterogeneous network, individuals at central positions (hub nodes) were given intranasal oxytocin (or placebo). Giving oxytocin (vs matching placebo) to central individuals increased their trust and enforcement of cooperation norms. Oxytocin-enhanced norm enforcement, but not elevated trust, explained the spreading of cooperation throughout the social network. Moreover, grounded in evolutionary game theory, we simulated computer agents that interacted in heterogeneous networks with central nodes varying in terms of cooperation and punishment levels. Simulation results confirmed that central cooperators' willingness to punish noncooperation allowed the permeation of the network and enabled the evolution of network cooperation. These results identify an oxytocin-initiated proximate mechanism explaining how individual cooperation facilitates network-wide cooperation in human society and shed light on the widespread phenomenon of heterogeneous composition and enforcement systems at all levels of life.SIGNIFICANCE STATEMENT Human society operates on large-scale cooperation. Yet because cooperation is exploitable by free riding, how cooperation in social networks emerges remains puzzling from evolutionary and societal perspectives. Here we identify oxytocin and altruistic punishment as key factors facilitating the propagation of cooperation in human social networks. Individuals played repeated economic games in heterogeneous networks where individuals at central positions were given oxytocin or placebo. Oxytocin-enhanced cooperative norm enforcement, but not elevated trust, explained cooperation spreading throughout the social network. Evolutionary simulations confirmed that central cooperators' willingness to punish noncooperation allowed the permeation of the network and enabled the evolution of cooperation. These results identify an oxytocin-initiated proximate mechanism explaining how individual cooperation facilitates network-wide cooperation in human social networks.


Assuntos
Teoria dos Jogos , Ocitocina , Comportamento Cooperativo , Feminino , Humanos , Masculino , Dilema do Prisioneiro , Punição , Rede Social
5.
R Soc Open Sci ; 8(8): 210653, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34457345

RESUMO

Cooperation is one of the key collective behaviours of human society. Despite discoveries of several social mechanisms underpinning cooperation, relatively little is known about how our neural functions affect cooperative behaviours. Here, we study the effect of a main neural function, working-memory capacity, on cooperation in repeated Prisoner's Dilemma experiments. Our experimental paradigm overcomes the obstacles in measuring and changing subjects' working-memory capacity. We find that the optimal cooperation level occurs when subjects remember two previous rounds of information, and cooperation increases abruptly from no memory capacity to minimal memory capacity. The results can be explained by memory-based conditional cooperation of subjects. We propose evolutionary models based on replicator dynamics and Markov processes, respectively, which are in good agreement with experimental results of different memory capacities. Our experimental findings differ from previous hypotheses and predictions of existent models and theories, and suggest a neural basis and evolutionary roots of cooperation beyond cultural influences.

6.
Phys Rev E ; 100(2-1): 022318, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574598

RESUMO

Edge dynamics is relevant to various real-world systems with complex network topological features. An edge dynamical system is controllable if it can be driven from any initial state to any desired state in finite time with appropriate control inputs. Here a framework is proposed to study the impact of correlation between in- and out-degrees on controlling the edge dynamics in complex networks. We use the maximum matching and direct acquisition methods to determine the controllability limit, i.e., the limit of acceptable change of the edge controllability by adjusting the degree correlation only. Applying the framework to plenty complex networks, we find that the controllability limits are ubiquitous in model and real networks. Arbitrary edge controllability in between the limits can be achieved by properly adjusting the degree correlation. Moreover, a nonsmooth phenomenon occurs in the upper limits, and exponential and power-law scaling behaviors are widespread in the approach or separation speed between the upper and lower limits.

7.
Sci Adv ; 5(7): eaav8192, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31281882

RESUMO

Humans are adept in simultaneously following multiple goals, but the neural mechanisms for maintaining specific goals and distinguishing them from other goals are incompletely understood. For short time scales, working memory studies suggest that multiple mental contents are maintained by theta-coupled reactivation, but evidence for similar mechanisms during complex behaviors such as goal-directed navigation is scarce. We examined intracranial electroencephalography recordings of epilepsy patients performing an object-location memory task in a virtual environment. We report that large-scale electrophysiological representations of objects that cue for specific goal locations are dynamically reactivated during goal-directed navigation. Reactivation of different cue representations occurred at stimulus-specific hippocampal theta phases. Locking to more distinct theta phases predicted better memory performance, identifying hippocampal theta phase coding as a mechanism for separating competing goals. Our findings suggest shared neural mechanisms between working memory and goal-directed navigation and provide new insights into the functions of the hippocampal theta rhythm.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiologia , Navegação Espacial , Ritmo Teta/fisiologia , Adulto , Feminino , Objetivos , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes de Navegação Mental , Processamento de Sinais Assistido por Computador
8.
Curr Biol ; 28(20): 3310-3315.e4, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30318350

RESUMO

Grid cells and theta oscillations are fundamental components of the brain's navigation system. Grid cells provide animals [1, 2] and humans [3, 4] with a spatial map of the environment by exhibiting multiple firing fields arranged in a regular grid of equilateral triangles. This unique firing pattern presumably constitutes the neural basis for path integration [5-8] and may also enable navigation in visual and conceptual spaces [9-12]. Theta frequency oscillations are a prominent mesoscopic network phenomenon during navigation in both rodents and humans [13, 14] and encode movement speed [15-17], distance traveled [18], and proximity to spatial boundaries [19]. Whether theta oscillations may also carry a grid-like signal remains elusive, however. Capitalizing on previous fMRI studies revealing a macroscopic proxy of sum grid cell activity in human entorhinal cortex (EC) [20-22], we examined intracranial EEG recordings from the EC of epilepsy patients (n = 9) performing a virtual navigation task. We found that the power of theta oscillations (4-8 Hz) exhibits 6-fold rotational modulation by movement direction, reminiscent of grid cell-like representations detected using fMRI. Modulation of theta power was specific to 6-fold rotational symmetry and to the EC. Hexadirectional modulation of theta power by movement direction only emerged during fast movements, stabilized over the course of the experiment, and showed sensitivity to the environmental boundary. Our results suggest that oscillatory power in the theta frequency range carries an imprint of sum grid cell activity potentially enabled by a common grid orientation of neighboring grid cells [23].


Assuntos
Córtex Entorrinal/fisiologia , Células de Grade/fisiologia , Movimento , Navegação Espacial/fisiologia , Ritmo Teta/fisiologia , Adulto , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Sci Rep ; 8(1): 2685, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422535

RESUMO

Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem. Bridging structural observability and sparse signal reconstruction theories, we develop a general framework to locate diffusion sources in time varying networks based solely on sparse data from a small set of messenger nodes. A general finding is that large degree nodes produce more valuable information than small degree nodes, a result that contrasts that for static networks. Choosing large degree nodes as the messengers, we find that sparse observations from a few such nodes are often sufficient for any number of diffusion sources to be located for a variety of model and empirical networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily with fewer required messenger nodes.

10.
Sci Rep ; 8(1): 1222, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352130

RESUMO

Experiments on the Ultimatum Game (UG) repeatedly show that people's behaviour is far from rational. In UG experiments, a subject proposes how to divide a pot and the other can accept or reject the proposal, in which case both lose everything. While rational people would offer and accept the minimum possible amount, in experiments low offers are often rejected and offers are typically larger than the minimum, and even fair. Several theoretical works have proposed that these results may arise evolutionarily when subjects act in both roles and there is a fixed interaction structure in the population specifying who plays with whom. We report the first experiments on structured UG with subjects playing simultaneously both roles. We observe that acceptance levels of responders approach rationality and proposers accommodate their offers to their environment. More precisely, subjects keep low acceptance levels all the time, but as proposers they follow a best-response-like approach to choose their offers. We thus find that status equality promotes rational sharing while the influence of structure leads to fairer offers compared to well-mixed populations. Our results are far from what is observed in single-role UG experiments and largely different from available predictions based on evolutionary game theory.


Assuntos
Jogos Experimentais , Comportamento Social , Tomada de Decisões , Humanos , Modelos Psicológicos
11.
Nat Commun ; 8(1): 1841, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29184073

RESUMO

Although most of wealth and innovation have been the result of human interaction and cooperation, we are not yet able to quantitatively predict the spatial distributions of three main elements of cities: population, roads, and socioeconomic interactions. By a simple model mainly based on spatial attraction and matching growth mechanisms, we reveal that the spatial scaling rules of these three elements are in a consistent framework, which allows us to use any single observation to infer the others. All numerical and theoretical results are consistent with empirical data from ten representative cities. In addition, our model can also provide a general explanation of the origins of the universal super- and sub-linear aggregate scaling laws and accurately predict kilometre-level socioeconomic activity. Our work opens a new avenue for uncovering the evolution of cities in terms of the interplay among urban elements, and it has a broad range of applications.

12.
Nat Commun ; 8(1): 1639, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29158475

RESUMO

Studies of human mobility in the past decade revealed a number of general scaling laws. However, to reproduce the scaling behaviors quantitatively at both the individual and population levels simultaneously remains to be an outstanding problem. Moreover, recent evidence suggests that spatial scales have a significant effect on human mobility, raising the need for formulating a universal model suited for human mobility at different levels and spatial scales. Here we develop a general model by combining memory effect and population-induced competition to enable accurate prediction of human mobility based on population distribution only. A variety of individual and collective mobility patterns such as scaling behaviors and trajectory motifs are accurately predicted for different countries and cities of diverse spatial scales. Our model establishes a universal underlying mechanism capable of explaining a variety of human mobility behaviors, and has significant applications for understanding many dynamical processes associated with human mobility.


Assuntos
Migração Humana , Dinâmica Populacional , China , Cidades , Humanos , Modelos Biológicos , Modelos Estatísticos , Viagem , Estados Unidos
13.
Proc Natl Acad Sci U S A ; 114(45): 11826-11831, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078286

RESUMO

Scientists strive to understand how functionalities, such as conservation laws, emerge in complex systems. Living complex systems in particular create high-ordered functionalities by pairing up low-ordered complementary processes, e.g., one process to build and the other to correct. We propose a network mechanism that demonstrates how collective statistical laws can emerge at a macro (i.e., whole-network) level even when they do not exist at a unit (i.e., network-node) level. Drawing inspiration from neuroscience, we model a highly stylized dynamical neuronal network in which neurons fire either randomly or in response to the firing of neighboring neurons. A synapse connecting two neighboring neurons strengthens when both of these neurons are excited and weakens otherwise. We demonstrate that during this interplay between the synaptic and neuronal dynamics, when the network is near a critical point, both recurrent spontaneous and stimulated phase transitions enable the phase-dependent processes to replace each other and spontaneously generate a statistical conservation law-the conservation of synaptic strength. This conservation law is an emerging functionality selected by evolution and is thus a form of biological self-organized criticality in which the key dynamical modes are collective.


Assuntos
Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Modelos Neurológicos
14.
Sci Rep ; 7(1): 4224, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652604

RESUMO

Dynamical processes occurring on the edges in complex networks are relevant to a variety of real-world situations. Despite recent advances, a framework for edge controllability is still required for complex networks of arbitrary structure and interaction strength. Generalizing a previously introduced class of processes for edge dynamics, the switchboard dynamics, and exploit- ing the exact controllability theory, we develop a universal framework in which the controllability of any node is exclusively determined by its local weighted structure. This framework enables us to identify a unique set of critical nodes for control, to derive analytic formulas and articulate efficient algorithms to determine the exact upper and lower controllability bounds, and to evaluate strongly structural controllability of any given network. Applying our framework to a large number of model and real-world networks, we find that the interaction strength plays a more significant role in edge controllability than the network structure does, due to a vast range between the bounds determined mainly by the interaction strength. Moreover, transcriptional regulatory networks and electronic circuits are much more strongly structurally controllable (SSC) than other types of real-world networks, directed networks are more SSC than undirected networks, and sparse networks are typically more SSC than dense networks.

15.
R Soc Open Sci ; 4(4): 170091, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28484635

RESUMO

Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for complex networks and compressive sensing, we develop a framework with high efficiency and robustness for optimal source localization in arbitrary weighted networks with arbitrary distribution of sources. We offer a minimum output analysis to quantify the source locatability through a minimal number of messenger nodes that produce sufficient measurement for fully locating the sources. When the minimum messenger nodes are discerned, the problem of optimal source localization becomes one of sparse signal reconstruction, which can be solved using compressive sensing. Application of our framework to model and empirical networks demonstrates that sources in homogeneous and denser networks are more readily to be located. A surprising finding is that, for a connected undirected network with random link weights and weak noise, a single messenger node is sufficient for locating any number of sources. The framework deepens our understanding of the network source localization problem and offers efficient tools with broad applications.

16.
Phys Rev E ; 95(3-1): 032303, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415181

RESUMO

To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are ubiquitous in nature, technology, and society still present an outstanding challenge in this field. Here we offer a framework for reconstructing complex networks with binary-state dynamics by developing a universal data-based linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochastic dynamics governed by monotonic functions. The linearization procedure enables us to convert the network reconstruction into a sparse signal reconstruction problem that can be resolved through convex optimization. We demonstrate generally high reconstruction accuracy for a number of complex networks associated with distinct binary-state dynamics from using binary data contaminated by noise and missing data. Our framework is completely data driven, efficient, and robust, and does not require any a priori knowledge about the detailed dynamical process on the network. The framework represents a general paradigm for reconstructing, understanding, and exploiting complex networked systems with binary-state dynamics.

17.
Proc Natl Acad Sci U S A ; 114(11): 2887-2891, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28235785

RESUMO

Communities are common in complex networks and play a significant role in the functioning of social, biological, economic, and technological systems. Despite widespread interest in detecting community structures in complex networks and exploring the effect of communities on collective dynamics, a deep understanding of the emergence and prevalence of communities in social networks is still lacking. Addressing this fundamental problem is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in society. An elusive question is how communities with common internal properties arise in social networks with great individual diversity. Here, we answer this question using the ultimatum game, which has been a paradigm for characterizing altruism and fairness. We experimentally show that stable local communities with different internal agreements emerge spontaneously and induce social diversity into networks, which is in sharp contrast to populations with random interactions. Diverse communities and social norms come from the interaction between responders with inherent heterogeneous demands and rational proposers via local connections, where the former eventually become the community leaders. This result indicates that networks are significant in the emergence and stabilization of communities and social diversity. Our experimental results also provide valuable information about strategies for developing network models and theories of evolutionary games and social dynamics.


Assuntos
Relações Interpessoais , Comportamento Social , Rede Social , Altruísmo , Teoria dos Jogos , Humanos
18.
Sci Rep ; 7: 40198, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074900

RESUMO

A challenging problem in network science is to control complex networks. In existing frameworks of structural or exact controllability, the ability to steer a complex network toward any desired state is measured by the minimum number of required driver nodes. However, if we implement actual control by imposing input signals on the minimum set of driver nodes, an unexpected phenomenon arises: due to computational or experimental error there is a great probability that convergence to the final state cannot be achieved. In fact, the associated control cost can become unbearably large, effectively preventing actual control from being realized physically. The difficulty is particularly severe when the network is deemed controllable with a small number of drivers. Here we develop a physical controllability framework based on the probability of achieving actual control. Using a recently identified fundamental chain structure underlying the control energy, we offer strategies to turn physically uncontrollable networks into physically controllable ones by imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate that, although full control can be theoretically guaranteed by the prevailing structural controllability theory, it is necessary to balance the number of driver nodes and control cost to achieve physical control.

19.
Phys Rev E ; 96(1-1): 012314, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347124

RESUMO

The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.

20.
Sci Rep ; 6: 38865, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966613

RESUMO

As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...