Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Phys Chem Chem Phys ; 26(32): 21832-21840, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102283

RESUMO

Self-activated phosphors have attracted considerable attention due to their low synthesis temperature, high excitation threshold, and broad emission spectrum. And self-activated tungstate phosphors are distinguished by their low cost and stable chemical properties. Generally, it is difficult to observe luminescence from tungstate phosphors at room temperature. Furthermore, blue-emitting tungstate phosphors with high quantum efficiency are rarely reported. In this study, we succeeded in discovering high quantum-efficiency bluish-white-emitting Li2(MgxZn1-x)2W2O9 phosphors and investigating their detailed crystal structures. Upon near-ultraviolet excitation at 266 nm, these phosphors exhibit a broadband emission peak. The red shift of emission is slight with increasing Zn content in Li2(MgxZn1-x)2W2O9. A highly compact octahedral [WO6] unit is observed in the Li2(MgxZn1-x)2W2O9 phosphors. The phosphors exhibit high internal quantum efficiencies (IQEs) of 68.70% (M = Mg), 43.90% (M = Mg0.5Zn0.5), and 22.90% (M = Zn), respectively. This study provides a bluish-white-emitting tungstate phosphor with high quantum efficiency.

2.
Int J Biol Macromol ; 277(Pt 3): 134213, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069039

RESUMO

African swine fever virus (ASFV) severely threatens the global economy and food security. ASFV encodes >150 genes, but the functions of most of them have yet to be characterized in detail. Here we explored the function of the ASFV CP312R gene and found that CP312R plays an essential role in ASFV replication. Knockout of the CP312R gene terminated viral replication and CP312R knockdown substantially suppressed ASFV infection in vitro. Furthermore, we resolved the crystal structure of pCP312R to 2.3 Å resolution and found that pCP312R has the potential to bind nucleic acids. LC-MS analysis and co-immunoprecipitation assay revealed that pCP312R interacts with RPS27A, a component of the 40S ribosomal subunit. Confocal microscopy showed the interaction between pCP312R and RPS27A leaded to a modification in the subcellular localization of this host protein, which suppresses host protein translation. Renilla-Glo luciferase assay and Ribopuromycylation analysis evidenced that knockout of RPS27A completely aborted the shutoff activity of pCP312R, and trans-complementation of RPS27A recovered pCP312R shutoff activity in RPS27A-knockout cells. Our findings shed light on the function of ASFV CP312R gene in virus infection, which triggers inhibition of host protein synthesis.

3.
Nicotine Tob Res ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028556

RESUMO

INTRODUCTION: Smoking is one of the most important predisposing factors of intestinal inflammatory diseases. Heated tobacco product (HTP) is a novel tobacco category that is claimed to deliver reduced chemicals to human those reported in combustible cigarette smoke (CS). However, the effect of HTP on intestine is still unknown. METHODS: In the framework of Organization for Economic Co-operation and Development guidelines 413 guidelines, Sprague-Dawley rats were exposed to HTP aerosol and CS for 13 weeks. The atmosphere was characterized and oxidative stress and inflammation of intestine were investigated after exposure. Furthermore, the faeces we performed with 16S sequencing and metabolomics analysis. RESULTS: HTP aerosol and CS led to obvious intestinal damage evidenced by increased intestinal pro-inflammatory cytokines and oxidative stress in male and female rats After HTP and CS exposure, the abundance that obviously changed were Lactobacillus and Turiciacter in male rats and Lactobacillus and Prevotella in female rats. HTP mainly induced the metabolism of amino acids and fatty acyls such as short-chain fatty acids and tryptophan, while CS involved into the main metabolism of bile acids, especially indole and derivatives. Although different metabolic pathways in the gut mediated by HTP and CS, both to inflammation and oxidative stress were ultimately induced. CONCLUSIONS: HTP aerosol and CS induced intestinal damage mediated by different gut microbiota and metabolites, while both lead to inflammation and oxidative stress. IMPLICATIONS: The concentration of various harmful components in heated tobacco product aerosol is reported lower than that of traditional cigarette smoke, however, its health risk impact on consumers remains to be studied. Our research findings indicate that heated tobacco product and cigarette smoke inhalation induced intestinal damage through different metabolic pathways mediated by gut microbiome, indicating the health risk of heated tobacco product in intestine.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124603, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878720

RESUMO

Iron-sulfur cluster conversion and nitrosyl modification are involved in regulating their functions and play critical roles in signaling for biological systems. Hereby, the photo-induced dynamic process of (Me4N)2[Fe2S2(NO)4] was monitored using time-resolved electron paramagnetic resonance (EPR) spectra, MS spectra and cellular imaging methods. Photo-irradiation and the solvent affect the reaction rates and products. Spectroscopic and kinetic studies have shown that the process involves at least three intermediates: spin-trapped NO free radical species with a gav at 2.040, and two other iron nitrosyl species, dinitrosyl iron units (DNICs) and mononitrosyl iron units (MNICs) with gav values at 2.031 and 2.024, respectively. Moreover, the [Fe2S2(NO)4]2- cluster could bind with ferritin and decompose gradually, and a binding state of dinitrosyl iron coordinated with Cys102 of the recombinant human heavy chain ferritin (rHuHF) was finally formed. This study provides insight into the photodynamic mechanism of nitrosyl iron - sulfur clusters to improve the understanding of physiological activity.


Assuntos
Ferro , Humanos , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/química , Ferro/metabolismo , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Ligação Proteica , Cinética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Enxofre/química , Enxofre/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Luz
5.
BMC Plant Biol ; 24(1): 619, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937683

RESUMO

BACKGROUND: Anthracnose, mainly caused by Colletotrichum fructicola, leads to severe losses in pear production. However, there is limited information available regarding the molecular response to anthracnose in pears. RESULTS: In this study, the anthracnose-resistant variety 'Seli' and susceptible pear cultivar 'Cuiguan' were subjected to transcriptome analysis following C. fructicola inoculation at 6 and 24 h using RNA sequencing. A total of 3186 differentially expressed genes were detected in 'Seli' and 'Cuiguan' using Illumina sequencing technology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the transcriptional response of pears to C. fructicola infection included responses to reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and secondary metabolite biosynthetic processes. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway and phenylpropanoid biosynthesis were involved in the defense of 'Seli'. Furthermore, the gene coexpression network data showed that genes related to plant-pathogen interactions were associated with C. fructicola resistance in 'Seli' at the early stage. CONCLUSION: Our results showed that the activation of specific genes in MAPK, calcium signaling pathways and phenylpropanoid biosynthesis was highly related to C. fructicola resistance in 'Seli' and providing several potential candidate genes for breeding anthracnose-resistant pear varieties.


Assuntos
Colletotrichum , Resistência à Doença , Perfilação da Expressão Gênica , Doenças das Plantas , Pyrus , Pyrus/microbiologia , Pyrus/genética , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas
7.
Sci Transl Med ; 16(745): eadh1763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691618

RESUMO

An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.


Assuntos
Aneurisma da Aorta Abdominal , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I , Receptor IGF Tipo 1 , Animais , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Humanos , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/prevenção & controle , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Suínos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ratos
8.
Trends Microbiol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580607

RESUMO

Rice blast is a highly destructive crop disease that requires the interplay of three essential factors: the virulent blast fungus, the susceptible rice plant, and favorable environmental conditions. Although previous studies have focused mainly on the pathogen and rice, recent research has shed light on the molecular mechanisms by which the blast fungus and environmental conditions regulate host resistance and contribute to blast disease outbreaks. This review summarizes significant achievements in understanding the sophisticated modulation of blast resistance by Magnaporthe oryzae effectors and the dual regulatory mechanisms by which environmental conditions influence rice resistance and virulence of the blast fungus. Furthermore, it emphasizes potential strategies for developing blast-resistant rice varieties to effectively control blast disease.

9.
J Am Chem Soc ; 146(17): 11657-11668, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641862

RESUMO

All protein-directed syntheses of metal nanoclusters (NCs) and nanoparticles (NPs) have attracted considerable attention because protein scaffolds provide a unique metal coordination environment and can adjust the shape and morphology of NCs and NPs. However, the detailed formation mechanisms of NCs or NPs directed by protein templates remain unclear. In this study, by taking advantage of the ferritin nanocage as a biotemplate to monitor the growth of Fe-O NCs as a function of time, we synthesized a series of iron NCs with different sizes and shapes and subsequently solved their corresponding three-dimensional atomic-scale structures by X-ray protein crystallography and cryo-electron microscopy. The time-dependent structure analyses revealed the growth process of these Fe-O NCs with the 4-fold channel of ferritin as nucleation sites. To our knowledge, the newly biosynthesized Fe35O23Glu12 represents the largest Fe-O NCs with a definite atomic structure. This study contributes to our understanding of the formation mechanism of iron NCs and provides an effective method for metal NC synthesis.


Assuntos
Ferritinas , Tamanho da Partícula , Ferritinas/química , Nanopartículas Metálicas/química , Ferro/química , Modelos Moleculares , Cristalografia por Raios X , Compostos Férricos/química
10.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473590

RESUMO

Transition metals and their oxide compounds exhibit excellent chemical reactivity; however, their easy agglomeration and high cost limit their catalysis applications. In this study, an interpolation structure of a Myriophyllum verticillatum L. biochar-supported Mn/Mg composite (Mn/Mg@MV) was prepared to degrade triphenyl phosphate (TPhP) from wastewater through the activating periodate (PI) process. Interestingly, the Mn/Mg@MV composite showed strong radical self-producing capacities. The Mn/Mg@MV system degraded 93.34% TPhP (pH 5, 10 µM) within 150 min. The experimental results confirmed that the predominant role of IO3· and the auxiliary ·OH jointly contributed to the TPhP degradation. In addition, the TPhP pollutants were degraded to various intermediates and subsequent Mg mineral phase mineralization via mechanisms like interfacial processes and radical oxidation. DFT theoretical calculations further indicated that the synergy between Mn and Mg induced the charge transfer of the carbon-based surface, leading to the formation of an ·OH radical-enriched surface and enhancing the multivariate interface process of ·OH, IO3, and Mn(VII) to TPhP degradation, resulting in the further formation of Mg PO4 mineralization.

11.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299379

RESUMO

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Assuntos
Quitina , Flores , Hypocreales , Oryza , Doenças das Plantas , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Doenças das Plantas/microbiologia , Quitina/metabolismo , Flores/microbiologia , Hypocreales/patogenicidade , Hypocreales/genética , Hypocreales/metabolismo , Transdução de Sinais , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulência , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
12.
Rice (N Y) ; 17(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170415

RESUMO

Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.

13.
Environ Sci Pollut Res Int ; 31(8): 11543-11558, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212564

RESUMO

Microplastics (MPs) have attracted much attention in recent years, due to the difficulty of degradation and threats to ecological systems and humans. Based on the analysis of 1429 articles on MPs in soil, we found that we know little about the behavior and fate of manure-born MPs from the livestock and poultry production systems to agriculture soils. This review summarizes the analytical methods for sampling, separation, and identification and the occurrence of MPs in livestock and poultry manure, mainly based on 7 surveys related to manure-born MPs. Then, the sources, fate, and environmental risks of MPs in livestock and poultry manure are discussed. MPs, heavy metals, pathogens, antibiotic resistance genes, and persistent organic pollutants are common pollutants in livestock and poultry manure. Worse, manure-born MPs will become smaller, rougher, and more numerous and could easily form more toxic compound pollution after complicated processes of manure treatment, which seriously threatens agricultural soil safety. Finally, an outlook is offered for future research. We hope this article to attract attention to the risks of MPs in livestock and poultry manure and provide a reference for future research.


Assuntos
Aves Domésticas , Solo , Humanos , Animais , Microplásticos , Plásticos , Gado , Esterco , Agricultura
14.
Toxicol Res (Camb) ; 13(1): tfae002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38250585

RESUMO

Background: Heated tobacco product (HTP) considered to be a novel tobacco product which was reported safer than traditional cigarettes evidenced by lower potential harmful components released. Liver is an important detoxification organ of the body, the chemical components in aerosols are metabolized in the liver after absorbed, so it is necessary to explore the effect of HTP on the liver. Materials and Methods: The potential effect of HTP and cigarette smoke (CS) on SD rats was explored according to OECD 413 subchronic inhalation. The rats were randomly divided into Sham (air), different dosage of HTP groups (HTP_10, 23 and 50 µg nicotine/L aerosol) and Cig_23 (23 µg nicotine/L aerosol) group. After exposure, the clinical pathology, inflammation and oxidative stress were measured. Results: The clinical pathology results showed that both HTP_50 and Cig_23 led to abnormality of ALT for male rats. CS and HTP exposure reduced the expression of IL-1ß, IL-6 and TNF-α and mitochondrial medicated oxidative stress. In addition, the ATP production was reduced in Cig_23 group. Although inflammation and oxidative stress were displayed, no apoptosis were observed by TUNEL assay and these existed obvious pathological changes only in HTP_50 group, while in CS group with equivalent nicotine, hepatocytes swelling were observed in liver. Conclusion: CS exposure induced liver damage through mitochondrial mediated oxidative stress and inflammation, which was also observed in high concentration of HTP exposure group. For the same equivalent nicotine, HTP may show lower toxic effect on liver than CS.

15.
Metallomics ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38263542

RESUMO

Four Ru(II)-centered isomeric complexes [RuCl(5cqn)(Val)(NO)] (1-4) were synthesized with 5cqn (5-chloro-8-hydroxyquinoline) and chiral Val (Val = L- or D-valine) as co-ligand, and their structures were confirmed using the X-ray diffraction method. The cytotoxicity and photodynamic activity of the isomeric complexes and their human serum albumin (HSA) complex adducts were evaluated. Both the isomeric complexes and their HSA complex adducts significantly affected HeLa cell proliferation, with an IC50 value in the range of 0.3-0.5 µM. The photo-controlled release of nitric oxide (NO) in solution was confirmed using time-resolved Fourier transform infrared and electron paramagnetic resonance spectroscopy techniques. Furthermore, photoinduced NO release in living cells was observed using a selective fluorescent probe for NO. Moreover, the binding constants (Kb) of the complexes with HSA were calculated to be 0.17-1.98 × 104 M-1 and the average number of binding sites (n) was found to be close to 1, it can serve as a crucial carrier for delivering metal complexes. The crystal structure of the HSA complex adduct revealed that one [RuCl(H2O)(NO)(Val)]+ molecule binds to a pocket in domain I. This study provides insight into possible mechanism of metabolism and potential applications for nitrosylruthenium complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Antineoplásicos/farmacologia , Óxido Nítrico , Albumina Sérica Humana/metabolismo , Células HeLa , Sítios de Ligação , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
17.
Plant Biotechnol J ; 22(1): 116-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752622

RESUMO

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Retroalimentação , Arabidopsis/metabolismo , Morte Celular , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas/genética
18.
J Environ Sci (China) ; 138: 46-61, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135412

RESUMO

It is important to investigate whether combining two modification strategies has a synergistic effect on the activity of photocatalysts. In this manuscript, Fe-doped BiOBr/Bi2WO6 heterojunctions were synthesized by a one-pot solvothermal method, and excellent photocatalytic performance was obtained for the degradation of tetracycline hydrochloride (TCH) in water without the addition of surfactant. Combining experiments and characterization, the synergistic effect between Fe ion doping and the BiOBr/Bi2WO6 heterojunction was elucidated. The Fe/BiOBr/Bi2WO6 composite photocatalyst had a beneficial void structure, enhanced visible light response, and could inhibit the recombination of photogenerated support well, which improved the photocatalytic activity. The presented experiments demonstrate that Fe/BiOBr/Bi2WO6 removes 97% of TCH from aqueous solution, while pure BiOBr and Bi2WO6 only remove 56% and 65% of TCH, respectively. Finally, the separation and transfer mechanisms of photoexcited carriers were determined in conjunction with the experimental results. This study provides a new direction for the design of efficient photocatalysts through the use of a dual co-modification strategy.


Assuntos
Surfactantes Pulmonares , Tetraciclina , Luz , Tensoativos , Água
19.
Viruses ; 15(12)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140630

RESUMO

Soybean mosaic virus (SMV) seriously harms soybean quality and yield. In order to understand the effect of a heterogeneous light environment on the disease resistance of intercropped soybeans, we simulated three kinds of light environments to learn the effects of white light, blue light, and far-red light on the SMV resistance of soybeans. The results showed that compared with the control, SMV-infected soybeans showed dwarfing and enhanced defense. The symptoms of leaves under red and blue light were less severe than those under white light, the virus content of infected plants was about 90% lower than under white light, the activity of antioxidant enzymes increased, and the accumulation of reactive oxygen species decreased. The oxidation damage in SMV-infected soybeans was serious under far-red light. Transcriptome data showed that the biostimulatory response, plant-pathogen interaction, and plant hormone signaling pathway gene expression of SMV-infected soybeans were significantly up-regulated under red light compared with the control. Compared with the control, the genes in the biostimulatory response, calcium ion binding, carbohydrate-binding, mitogen-activated protein kinase (MAPK) signaling, and plant-pathogen interaction pathways, were significantly up-regulated in SMV-infected soybeans under blue light. In far-red light, only 39 genes were differentially expressed in SMV-infected soybeans compared with the control, and most of the genes were down-regulated. Compared with the control, the up-regulation of the salicylic acid (SA) pathway defense gene in SMV-infected soybeans under red light was higher than under other light treatments. Compared with the control, the up-regulation of the jasmonic acid (JA) and ethylene (ET) pathway defense genes in SMV-infected soybeans under blue light was higher than under other light treatments. Compared with the control, most defense-related genes in the SA and JA pathways were inhibited in SMV-infected soybeans under far-red light, while genes in the ET pathway were significantly up-regulated. These results will advance our understanding of the disease resistance mechanism of intercropping soybeans in a heterogeneous light environment and provide new ideas for the prevention and control of viral diseases.


Assuntos
Vírus do Mosaico , Potyvirus , Glycine max , Luz Azul , Ácido Salicílico , Resistência à Doença/genética , Potyvirus/fisiologia , Doenças das Plantas
20.
Toxicol Res (Camb) ; 12(5): 902-912, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915495

RESUMO

Background: Researches have shown that chronic inhalation of cigarette smoke (CS) disrupts male reproductive system, but it is unclear about the mechanisms behind reproductive damages by tobacco toxicants in male rats. This study was designed to explore the effects of heated tobacco products (HTP) aerosols and CS exposure on the testicular health of rats. Materials and Methods: Experiments were performed on male SD rats exposed to filtered air, HTP aerosols at 10 µg/L, 23 µg/L, and 50 µg/L nicotine-equivalent contents, and also CS at 23 µg/L nicotine-equivalent content for 90 days in five exposure groups (coded as sham, HTP_10, HTP_23, HTP_50 and Cig_23). The expression of serum testosterone, testicular tissue inflammatory cytokines (IL-1ß, IL-6, IL-10, TNF-α), reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA), NLRP3 inflammasome-related mRNAs and proteins (NLRP3, ASC, and Caspase-1), the degree of pyroptosis and histopathology were investigated. Results: The results demonstrated that HTP_50 and Cig_23 caused varying degrees of oxidative damage to rat testis, resulting in a decrease of sperm quantity and serum testosterone contents, an increase in the deformity rate, expression levels of proinflammatory cytokines, and NLRP3 inflammasome-related mRNA, and an increase in the NLRP3, ASC, and Caspase-1-immunopositive cells, pyroptosis cell indices, and histopathological damage in the testes of rats. Responses from the HTP_10 and HTP_23 groups were less than those found in the above two exposure groups. Conclusion: These findings indicate that HTP_50 and Cig_23 induced oxidative stress in rat testes, induced inflammation and pyroptosis through the ROS/NLRP3/Caspase-1 pathway, and destroyed the integrity of thetesticular tissue structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA