Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 368(6490): 534-537, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32355033

RESUMO

Edge supercurrents in superconductors have long been an elusive target. Interest in them has reappeared in the context of topological superconductivity. We report evidence for the existence of a robust edge supercurrent in the Weyl superconductor molybdenum ditelluride (MoTe2). In a magnetic field B, fluxoid quantization generates a periodic modulation of the edge condensate observable as a "fast-mode" oscillation of the critical current I c versus B The fast-mode frequency is distinct from the conventional Fraunhofer oscillation displayed by the bulk supercurrent. We confirm that the fast-mode frequency increases with crystal area as expected for an edge supercurrent. In addition, weak excitation branches are resolved that display an unusual broken symmetry.

2.
Luminescence ; 32(6): 908-912, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28071869

RESUMO

CaSnO3 :Bi3+ blue-emitting phosphor was synthesized using a high-temperature solid-state reaction method in air. The crystal structures and luminescence properties were investigated. A broad emission band peaking at ~448 nm upon excitation at 262 and 308 nm was observed in the range 330-680 nm at room temperature due to 3 P1  â†’ 1 S0 transition of the Bi3+ ion. The chromaticity coordinate was (0.1786, 0.1665). The optimal Bi3+ ion concentration was ~0.6 mol% in CaSnO3 :Bi3+ phosphor. The emission spectrum of CaSnO3 :Bi3+ phosphor showed a blue-shift with increasing temperature from 50 to 300 K due to the influence of temperature on the electron transition of the Bi3+ ion. The emission intensity of CaSnO3 :Bi3+ phosphor may be increased ~1.45 times by co-doping Li+ ions as a charge compensator and fluxing agent. The luminescence mechanism is explained by a configurational coordinate diagram of Bi3+ ion in CaSnO3 :Bi3+ phosphor.


Assuntos
Bismuto/química , Lítio/química , Substâncias Luminescentes/síntese química , Cor , Luminescência , Substâncias Luminescentes/química , Medições Luminescentes
3.
Sci Adv ; 2(7): e1600167, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27482539

RESUMO

A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T 1 ~ 70 mK and T 2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample.


Assuntos
Imãs , Teoria Quântica , Semicondutores , Temperatura
4.
Nat Commun ; 7: 11456, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27118032

RESUMO

A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.

5.
Science ; 350(6259): 413-6, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26338798

RESUMO

In a Dirac semimetal, each Dirac node is resolved into two Weyl nodes with opposite "handedness" or chirality. The two chiral populations do not mix. However, in parallel electric and magnetic fields ( E: || B: ), charge is predicted to flow between the Weyl nodes, leading to negative magnetoresistance. This "axial" current is the chiral (Adler-Bell-Jackiw) anomaly investigated in quantum field theory. We report the observation of a large, negative longitudinal magnetoresistance in the Dirac semimetal Na3Bi. The negative magnetoresistance is acutely sensitive to deviations of the direction of B: from E: and is incompatible with conventional transport. By rotating E: (as well as B: ), we show that it is consistent with the prediction of the chiral anomaly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...