Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 558(2): 200-7, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25542807

RESUMO

BACKGROUNDS AND OBJECTIVES: Clopidogrel, an inhibitor of platelet ADP P2Y12 receptors, plays an important role in the prevention of stent thrombosis. However, some patients do not attain adequate antiplatelet effects. Studies have shown that the genetic variation in CYP2C19*2 is associated with an impaired response to clopidogrel. This study was designed to investigate the genetic variants of 21 genes involving in the absorption, metabolism, and pharmacodynamics of clopidogrel. The effects of these genes on the plasma level of clopidogrel and its metabolites (active clopi-H4 and inactive CLPM) and platelet reactivity were also studied. METHODS AND RESULTS: 401 acute coronary syndrome (ACS) patients received either a 300 mg loading dose following 75 mg maintenance dose daily or a 75mg maintenance dose daily of clopidogrel. The inhibition of platelets was assessed using light transmittance aggregometry. Plasma concentrations of clopidogrel as well as its active (clopi-H4) and inactive (CLPM) metabolites were measured using HPLC-MS-MS method. Among 21 genes, the carriers of CYP2C19*2 were associated with lower exposure to its active (clopi-H4) and inactive (CLPM) metabolites (both P<0.05 vs. non-carriers) and thus decreased platelet inhibition (P<0.05 vs. non-carriers). Notably, the carriers of ABCB1 C3435T were associated with lower levels of plasma clopidogrel and its active (clopi-H4) and inactive (CLPM) metabolites (all P<0.05 vs. non-carriers) which also correlated with subsequently decreased platelet inhibition (P<0.05 vs. non-carriers). There were no obvious effects of other studied genes on clopidogrel. CONCLUSIONS: CYP2C19*2 is a determinant for the formation of the active metabolite of clopidogrel and its antiplatelet effects. Meanwhile, ABCB1 C3435T plays an important role in intestinal absorption of clopidogrel which further affects the exposure to the active metabolite of clopidogrel and platelet aggregation.


Assuntos
Síndrome Coronariana Aguda/tratamento farmacológico , Síndrome Coronariana Aguda/genética , Citocromo P-450 CYP2C19/genética , Inibidores da Agregação Plaquetária/farmacocinética , Polimorfismo Genético , Ticlopidina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Síndrome Coronariana Aguda/metabolismo , Idoso , Clopidogrel , Relação Dose-Resposta a Droga , Feminino , Humanos , Inativação Metabólica/genética , Masculino , Pessoa de Meia-Idade , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Inibidores da Agregação Plaquetária/administração & dosagem , Polimorfismo de Nucleotídeo Único , Ticlopidina/administração & dosagem , Ticlopidina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...