Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 25(4): 154, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36911368

RESUMO

Glioblastoma (GBM), which has poor prognosis and low 5-year survival rate, is the most common primary central nervous system malignant tumour in adults. Kinesin family member 18A (KIF18A) plays an important role in multiple tumours and is potential therapeutic target for GBM. Therefore, the present study investigated the role of KIF18A in GBM. The expression level and survival prognosis of KIF18A and protein phosphatase 1 catalytic subunit α (PPP1CA) in GBM patients were analysed using the Chinese Glioma Genome Atlas (CGGA) database. Reverse transcription-quantitative PCR and western blot analysis were applied to measure the expression of KIF18A and PPP1CA in normal and GBM cell lines. KIF18A expression was inhibited through cell transfection with a KIF18A-targeting short hairpin RNA. Cell proliferation was detected with the Cell Counting Kit-8 assay. Flow cytometry was used to detect cell cycle changes. Transwell and wound healing assays were used to measure cell invasion and migration. Western blotting was utilized for the detection of invasion- and migration-related proteins MMP9 and MMP2. Biological General Repository for Interaction Datasets and GeneMANIA databases were used to analyse the interaction between KIF18A and PPP1CA. The correlation between PPP1CA and KIF18A was examined using data from the CGGA database. Immunoprecipitation was used to demonstrate the binding relationship between KIF18A and PPP1CA. PPP1CA was overexpressed using cell transfection technology and its mechanism was further examined. The results demonstrated that KIF18A was upregulated in GBM cells compared with normal microglia HMC3. Compared with that in sh-NC group, silencing of KIF18A reduced cell proliferation, induced G2/M cycle arrest and inhibited the migration and the invasion of A172 GBM cells by interacting with PPP1CA. In conclusion, KIF18A interacted with PPP1CA to promote the proliferation, cycle arrest, migration and invasion of GBM cells.

2.
Chem Asian J ; 18(2): e202201027, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36451290

RESUMO

Herein, a series of carbon dot composites (CDC) with full-color and long-lived room-temperature phosphorescence (RTP) are prepared by a simple solid-phase one-step method from a single non-conjugated and non-aromatic carbon source. The RTP emission wavelength can be adjusted from 462 to 623 nm by changing the feeding ratio and reaction temperature. The luminescent lifetime and quantum yield of a green emissive CDC (AB-CDC-3) reach 1.1 s and 39%, respectively, because of the close interaction between carbon dots and inorganic matrix. Due to the existence of multiple luminescent centers, these CDC exhibit excitation wavelength-dependent RTP and a white emission when excited at a specific wavelength. A single-component afterglow luminescent diode based on AB-CDC-4 shows a high-quality white emission with CIE of (0.30, 0.33) and color-rendering index of 88. Based on the unique photophysical properties of the composites, they exhibit huge application potential in the field of multilevel anti-counterfeiting, fingerprint identification, and optoelectronic devices.


Assuntos
Carbono , Luminescência , Temperatura
3.
Acta Biomater ; 142: 99-112, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35189379

RESUMO

Proteinuria is a clinical manifestation of chronic kidney disease that aggravates renal interstitial fibrosis (RIF), in which injury of peritubular microvessels is an important event. However, the changes in peritubular microvessels induced by proteinuria and their molecular mechanisms remain unclear. Thus, we aimed to develop a co-culture microfluidic device that contains renal tubules and peritubular microvessels to create a proteinuria model. We found that protein overload in the renal tubule induced trans-differentiation and apoptosis of endothelial cells (ECs) and pericytes. Moreover, profiling of secreted proteins in this model revealed that a paracrine network between tubules and microvessels was activated in proteinuria-induced microvascular injury. Multiple cytokine receptors in this paracrine network were core-fucosylated. Inhibition of core fucosylation significantly reduced ligand-receptor binding ability and blocked downstream pathways, alleviating trans-differentiation and apoptosis of ECs and pericytes. Furthermore, the protective effect of genetic FUT8 deficiency on proteinuria overload-induced RIF and pericyte-myofibroblast trans-differentiation was validated in FUT8 knockout heterozygous mice. In conclusion, we constructed and used a multiple-unit integrated microfluidic device to uncover the mechanism of proteinuria-induced RIF. Furthermore, FUT8 may serve as a hub-like therapeutic target to alleviate peritubular microvascular injury in RIF. STATEMENT OF SIGNIFICANCE: In this study, we constructed a multiple-unit integrated renal tubule-vascular chip. We reproduced human proteinuria on the chip and found that multiple receptors were modified by FUT8-catalyzed core fucosylation (CF) involved in the cross-talk between renal tubules and peritubular microvessels in proteinuria-induced RIF, and inhibiting the FUT8 of receptors could block the tubule-microvessel paracrine network and reverse the damage of peritubular microvessels and renal interstitial fibrosis. This tubule-vascular chip may provide a prospective platform to facilitate future investigations into the mechanisms of kidney diseases, and target-FUT8 inhibition may be an innovative and potential therapeutic strategy for RIF induced by proteinuria.


Assuntos
Nefropatias , Microfluídica , Animais , Células Endoteliais/metabolismo , Feminino , Fibrose , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Humanos , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteinúria
4.
J Cell Physiol ; 235(11): 7757-7768, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31742692

RESUMO

Long noncoding RNAs (lncRNAs) play a crucial role in several malignances, involving nasopharyngeal carcinoma (NPC), a heterogeneous disease. This study investigated mechanism of serine/arginine repetitive matrix protein 2-alternative splicing (SRRM2-AS) in NPC cell proliferation, differentiation, and angiogenesis. Initially, differentially expressed lncRNAs were screened out via microarray analysis. Vascular endothelial growth factor (VEGF) protein positive rate and microvessel density (MVD) were determined in NPC and adjacent tissues. NPC CNE-2 cells were treated with a series of vector and small interfering RNA to explore the effect of SRRM2-AS in NPC. The target relationship between myosin light chain kinase (MYLK) and SRRM2-AS was verified. Levels of SRRM2-AS, MYLK, cGMP, PKG, VEGF, PCNA, Ki-67, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and Caspase 3 were determined after transfection. Finally, the effect of SRRM2-AS on cell proliferation, colony formation, angiogenesis, cell cycle, and apoptosis in NPC was evaluated. SRRM2-AS was highly expressed and MYLK was poorly expressed in NPC tissues. VEGF protein positive rate and MVD were elevated in NPC tissues. MYLK was confirmed to be a target gene of SRRM2-AS. Silencing of SRRM2-AS elevated levels of MYLK, cGMP, PKG, Bax, and Caspase 3, but decreased levels of VEGF, PCNA, Ki-67, and Bcl-2. Especially, silencing of SRRM2-AS suppressed cell proliferation, colony formation and angiogenesis, blocked cell cycle, and enhanced cell apoptosis in NPC. Our results suggested that silencing of SRRM2-AS protected against angiogenesis of NPC cells by upregulating MYLK and activating the cGMP-PKG signaling pathway, which provides a new target for NPC treatment.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neovascularização Patológica/genética , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Proteínas de Ligação ao Cálcio/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Quinase de Cadeia Leve de Miosina/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
5.
Biochem Biophys Res Commun ; 520(3): 612-618, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31623829

RESUMO

BACKGROUND: FUT8-mediated core fucosylation, which transfers a fucose residue from GDP-fucose to core-GlcNAc of the N-linked type glycoproteins, is crucial for signaling receptors function. Core fucosylation is involved in various biological processes such as cell proliferation, apoptosis, differentiation and immune regulation. Our previous studies demonstrated that inhibiting core fucosylation prevented renal interstitial fibrosis of UUO murine models, but its role in the development of diabetic kidney disease (DKD) remains unclear. This study aimed to clarify the protective effects and molecular mechanisms during the progress of DKD by inhibiting core fucosylation in vivo. METHODS: Core fucosylation was examined in streptozotocin (STZ)-induced diabetic mouse model. Then a new Fut8 mutation mouse model in which exon 7 of Fut8 gene is deleted was constructed for diabetes induction. Metabolic and renal parameters were measured. Renal structure, fibrosis, and podocyte injury were assessed, and underlying mechanisms were investigated. RESULTS: The levels of fasting blood glucose, glycated hemoglobin, kidney-weight-to- body-weight (KW/BW) and urine albumin-to-creatinine (ACR) were increased at 16 weeks post injection. KW/BW and urine ACR were decreased significantly by inhibiting core fucosylation. The renal pathology, fibrosis, and podocyte injury were mitigated significantly by inhibiting core fucosylation. The protective effects of inhibiting core fucosylation were mediated by downregulated of the phosphorylation of Smad2/3 and extracellular signal-regulated kinase (ERK). CONCLUSIONS: Our results indicate that FUT8-based treatment might be a promising intervention strategy in therapeutic paradigm of DKD.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Fucose/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Progressão da Doença , Regulação para Baixo , Fibrose , Fucosiltransferases/deficiência , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosilação , Rim/metabolismo , Rim/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Transdução de Sinais , Proteínas Smad/metabolismo
6.
Oncol Lett ; 11(1): 760-766, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26870280

RESUMO

Activating transcription factor 2 (ATF2) is a member of the cAMP response element binding protein family that heterodimerizes and activates other transcription factors involved in stress and DNA damage responses, growth, differentiation and apoptosis. ATF2 has been investigated as a potential carcinogenic biomarker in certain types of cancer, such as melanoma. However, its function and clinical significance in non-small cell lung cancer (NSCLC) has not been well studied. Therefore, the present study aimed to analyze the association between ATF2/phosphorylated (p)-ATF2 expression and NSCLC malignant behavior, and discuss its clinical significance. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the expression of ATF2 in NSCLC cell lines and fresh NSCLC tissue samples. In addition, immunohistochemistry (IHC) was performed to identify the location and expression of ATF2 and p-ATF2 (threonine 71) in paraffin-embedded sections of NSCLC and adjacent normal tissue. The results demonstrated that ATF2 was markedly overexpressed in the NSCLC cells and significantly overexpressed in the fresh NSCLC tissues compared with the control cells and samples (86 paraffin-embedded tissue sections), respectively (P<0.01). Further data demonstrated that ATF2 expression levels were significantly increased in tumor tissues compared to normal tissues and ATF2 was located in the cytoplasm and nucleus. ATF2 expression was closely associated with adverse clinical characteristics such as TNM stage (P=0.002), tumor size (P=0.018) and metastasis (P=0.027). In addition, nuclear p-ATF2 staining was positive in 65/86 samples of NSCLC. Furthermore, the Kaplan-Meier analysis indicated that patients with high levels of ATF2 and p-ATF2 expression had a significantly shorter overall survival compared with patients exhibiting a low expression (P<0.01 and P<0.05, respectively). Subsequent in vitro experiments revealed that cell growth decreased following knockdown of ATF2 expression using RNA interference, indicating that ATF2 may suppress cell proliferation. Taken together, the results of the present study demonstrated that ATF2 and p-ATF2 were significantly overexpressed in NSCLC tissues, and ATF2 and p-ATF2 overexpression predicted significantly worse outcomes for patients with NSCLC.

7.
J Med Imaging (Bellingham) ; 2(2): 023501, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26158095

RESUMO

Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of [Formula: see text], with [Formula: see text] binning during the acquisition giving an effective pixel size of [Formula: see text]. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors.

8.
Peptides ; 43: 76-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23500519

RESUMO

Ghrelin, an acylated peptide produced in the stomach, increases food intake and growth hormone secretion, inhibits pro-inflammatory cascade, etc. Ghrelin and its receptor (GHS-R1a) mRNA were found in the area related to the regions for controlling pain transmission, such as the hypothalamus, the midbrain, the spinal cord, etc. Ghrelin has been shown to have antinociceptive activity and also anti-inflammatory properties in inflammatory pain and chronic neuropathic pain. Therefore, the aim of the present study was to investigate the effects of ghrelin for the first time in the acute pain modulation at the supraspinal level, using the tail withdrawal test and hot-plate test in mice. Intracerebroventricular (i.c.v.) administration of ghrelin (mouse, 0.1-3 nmol) produced a dose- and time-related antinociceptive effect in the tail withdrawal test and hot-plate test, respectively. Antinociceptive effect elicited by ghrelin (i.c.v., 1 nmol) was significantly antagonized by opioid receptor antagonist naloxone (i.c.v., 10 nmol co-injection or i.p., 10mg/kg, 10 min prior to ghrelin) in both tail withdrawal test and hot-plate test. At these doses, naloxone significantly antagonized the antinociceptive effect induced by morphine (i.c.v., 3 nmol). Ghrelin (i.c.v., 1 nmol)-induced antinociception was significantly antagonized by co-injection with 10 nmol [d-Lys3]-GHRP-6, the selective antagonist of GHS-R1a identified more recently, while [d-Lys3]-GHRP-6 (10 nmol) alone induced neither hyperalgesia nor antinociception. Overall this data indicate that ghrelin could produce antinociception through an interaction with GHS-R1a and with the central opioid system. Thus ghrelin may be a promising peptide for developing new analgesic drugs.


Assuntos
Dor Aguda/tratamento farmacológico , Grelina/farmacologia , Grelina/uso terapêutico , Medula Espinal/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Grelina/administração & dosagem , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA