Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Agric Food Chem ; 72(18): 10584-10595, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38652774

RESUMO

Triterpenoids from Camellia species comprise a diverse class of bioactive compounds with great therapeutic potential. However, triterpene biosynthesis in tea plants (Camellia sinensis) remains elusive. Here, we identified eight putative 2,3-oxidosqualene cyclase (OSC) genes (CsOSC1-8) from the tea genome and characterized the functions of five through heterologous expression in yeast and tobacco and transient overexpression in tea plants. CsOSC1 was found to be a ß-amyrin synthase, whereas CsOSC4, 5, and 6 exhibited multifunctional α-amyrin synthase activity. Molecular docking and site-directed mutagenesis showed that the CsOSC6M259T/W260L double mutant yielded >40% lupeol, while the CsOSC1 W259L single mutant alone was sufficient for lupeol production. The V732F mutation in CsOSC5 altered product formation from friedelin to taraxasterol and ψ-taraxasterol. The L254 M mutation in the cycloartenol synthase CsOSC8 enhanced the catalytic activity. Our findings shed light on the molecular basis governing triterpene diversity in tea plants and offer potential avenues for OSC engineering.


Assuntos
Camellia sinensis , Transferases Intramoleculares , Proteínas de Plantas , Triterpenos , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Transferases Intramoleculares/química , Triterpenos/metabolismo , Triterpenos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Camellia sinensis/genética , Camellia sinensis/enzimologia , Camellia sinensis/metabolismo , Camellia sinensis/química , Simulação de Acoplamento Molecular , Genoma de Planta
2.
Semin Arthritis Rheum ; 65: 152405, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335695

RESUMO

OBJECTIVE: Adolescent-onset gout has a greater impact on the lives and health of patients than adult-onset gout. However, there is a relative lack of clinical information on adolescent-onset gout. Hence, we analyzed a Chinese cohort. METHODS: We studied clinical features of 9,003 Chinese patients. Gout onset age of 12 - 19 years is defined as adolescent-onset group (AG), 20 - 40 years as early-onset group (EG), and 41 - 64 years as late-onset group (LG). Multivariable regression analysis evaluated factors associated with recurrent flares, serum urate (SU) levels, and underexcretion type in AG. RESULTS: Compared with EG and LG, the AG had higher SU levels [AG: 9.5 (2.2) mg/dL, EG: 8.6 (2.1) mg/dL, LG: 7.73 (2.0) mg/dL, P < 0.001], higher percentage of positive family history of gout (AG: 41.8 %, EG: 29.6 %, LG: 24.6 %, P < 0.001), underexcretion type (AG: 62.4 %, EG: 62.5 %, LG: 58.8 %, P = 0.04), recurrent flares (AG: 78.1 %, EG: 70.3 %, LG: 68.9 %, P = 0.01). Urate-lowering therapy (ULT) initiated [OR 6.58 (95 % CI 1.35 - 32.00)] and hypercholesterolemia [OR 4.16 (95 % CI 1.28 - 13.53)] were associated with recurrent flares. eGFR was identified to be a significant variable of increasing SU levels [beta -0.24 (95 % CI -0.04 to -0.01)]. Hypertriglyceridemia [OR 0.35 (95 % CI 0.17 - 0.71)] was related to underexcretion type. CONCLUSION: Adolescent-onset gout patients had clinically distinctive features with higher SU levels, BMI, positive gout family history, underexcretion type and recurrent flares. These specific populations were less likely to achieve ULT target, requiring more clinical attention.


Assuntos
Gota , Ácido Úrico , Adulto , Humanos , Adolescente , Criança , Adulto Jovem , Estudos Transversais , Supressores da Gota/uso terapêutico , Gota/diagnóstico , Gota/tratamento farmacológico , China
3.
Front Immunol ; 15: 1333993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352872

RESUMO

Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.


Assuntos
Artrite Reumatoide , Doenças Ósseas , Humanos , Feminino , Linfócitos T Reguladores , Qualidade de Vida , Artrite Reumatoide/tratamento farmacológico , Células Th17 , Doenças Ósseas/tratamento farmacológico
4.
RSC Adv ; 14(8): 5390-5399, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38348294

RESUMO

This study explores the removal of Cd(ii) from wastewater using a microbial electrolysis cell (MEC) to investigate the electrochemical performance and removal kinetics of an anodic polarity reversal biocathode and the mechanism of action of electrochemically active bacteria. Comparative electrochemical methods showed that using an anodic polarity reversal biocathode resulted in greater than 90% removal of different concentrations of Cd(ii) within three days, which may be related to the catalytic effect of anodic electrochemically active bacteria. However, due to the ability of bacteria to regulate, up to nearly 2 mg L-1 of Cd(ii) ions will remain in solution. As shown by the linear fitting relationship between scanning speed and peak current, the removal process was dominated by adsorption control for 20-80 mg L-1 Cd(ii) and diffusion control for 100 mg L-1 Cd(ii). The analysis of raw sludge and sludge containing Cd(ii) showed that Arcobacter and Pseudomonas were the primary cadmium-tolerant bacteria, and that the ability to remove Cd(ii) was the result of a synergistic collaboration between autotrophic and heterotrophic Gram-negative bacteria.

6.
Metabolites ; 13(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999217

RESUMO

Gray blight disease, which is caused by Pestalotiopsis-like species, poses significant challenges to global tea production. However, the comprehensive metabolic responses of tea plants during gray blight infection remain understudied. Here, we employed a multi-omics strategy to characterize the temporal transcriptomic and metabolomic changes in tea plants during infection by Pseudopestalotiopsis theae, the causal agent of gray blight. Untargeted metabolomic profiling with ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) revealed extensive metabolic rewiring over the course of infection, particularly within 24 h post-inoculation. A total of 64 differentially accumulated metabolites were identified, including elevated levels of antimicrobial compounds such as caffeine and (-)-epigallocatechin 3-gallate, as well as oxidative catechin polymers like theaflavins, theasinensins and theacitrins. Conversely, the synthesis of (+)-catechin, (-)-epicatechin, oligomeric proanthocyanidins and flavonol glycosides decreased. Integrated omics analyses uncovered up-regulation of phenylpropanoid, flavonoid, lignin biosynthesis and down-regulation of photosynthesis in response to the pathogen stress. This study provides novel insights into the defense strategies of tea plants against gray blight disease, offering potential targets for disease control and crop improvement.

7.
Mol Genet Genomics ; 298(6): 1261-1278, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914978

RESUMO

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs. MicroRNAs-mediated signaling pathways play a critical regulatory role in inducing apoptosis, autophagy, and pyroptosis in developing knee osteoarthritis (KOA). Given this, we searched databases, such as PubMed, using keywords including "miRNA," "knee osteoarthritis," "apoptosis," "autophagy," "pyroptosis", and their combinations. Through an extensive literature review, we conclude that miRNAs can be modulated through various signaling pathways, such as Wnt/ß-catenin, TGF-ß, PI3K/AKT/mTOR, and NLRP3/Caspase-1, to regulate apoptosis, autophagy, and pyroptosis in KOA. Furthermore, we note that P2X7R and HMGB1 may be crucial regulatory molecules involved in the interconnected regulation of apoptosis, autophagy, and pyroptosis in KOA. Additionally, we describe that miR-140-5p and miR-107 can modulate the advancement of KOA chondrocytes by targeting distinct molecules involved in apoptosis, autophagy, and pyroptosis, respectively. Therefore, we conclude that miRNAs may be potential biomarkers and therapeutic targets for the early prediction, diagnosis, and effective therapeutic approaches of KOA.


Assuntos
MicroRNAs , Osteoartrite do Joelho , Humanos , MicroRNAs/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Piroptose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/genética , Autofagia/genética
8.
Front Endocrinol (Lausanne) ; 14: 1210627, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645421

RESUMO

Osteoporosis (OP) is characterized by a decrease in osteoblasts and an increase in adipocytes in the bone marrow compartment, alongside abnormal bone/fat differentiation, which ultimately results in imbalanced bone homeostasis. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and adipocytes to maintain bone homeostasis. Several studies have shown that lncRNAs are competitive endogenous RNAs that form a lncRNA-miRNA network by targeting miRNA for the regulation of bone/fat differentiation in BMSCs; this mechanism is closely related to the corresponding treatment of OP and is important in the development of novel OP-targeted therapies. However, by reviewing the current literature, it became clear that there are limited summaries discussing the effects of the lncRNA-miRNA network on osteogenic/adipogenic differentiation in BMSCs. Therefore, this article provides a review of the current literature to explore the impact of the lncRNA-miRNA network on the osteogenic/adipogenic differentiation of BMSCs, with the aim of providing a new theoretical basis for the treatment of OP.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Osteogênese/genética , MicroRNAs/genética , Diferenciação Celular/genética , Osteoporose/genética
9.
Front Microbiol ; 14: 1177393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180271

RESUMO

Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc), especially tropical race 4 (TR4), presents the foremost menace to the global banana production. Extensive efforts have been made to search for efficient biological control agents for disease management. Our previous study showed that Streptomyces sp. XY006 exhibited a strong inhibitory activity against several phytopathogenic fungi, including F. oxysporum. Here, the corresponding antifungal metabolites were purified and determined to be two cyclic lipopeptide homologs, lipopeptin A and lipopeptin B. Combined treatment with lipopeptin complex antagonized Foc TR4 by inhibiting mycelial growth and conidial sporulation, suppressing the synthesis of ergosterol and fatty acids and lowering the production of fusaric acid. Electron microscopy observation showed that lipopeptide treatment induced a severe disruption of the plasma membrane, leading to cell leakage. Lipopeptin A displayed a more pronounced antifungal activity against Foc TR4 than lipopeptin B. In pot experiments, strain XY006 successfully colonized banana plantlets and suppressed the incidence of FWB, with a biocontrol efficacy of up to 87.7%. Additionally, XY006 fermentation culture application improved plant growth parameters and induced peroxidase activity in treated plantlets, suggesting a possible role in induced resistance. Our findings highlight the potential of strain XY006 as a biological agent for FWB, and further research is needed to enhance its efficacy and mode of action in planta.

10.
NPJ Sci Food ; 7(1): 7, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928372

RESUMO

The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.

11.
World J Clin Cases ; 10(20): 7090-7096, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-36051124

RESUMO

BACKGROUND: Left bundle branch pacing (LBBP) is a physiological pacing method that has emerged in recent years. It is an ideal choice for patients with complete left bundle branch block who are in need of cardiac resynchronization therapy (CRT). Moreover, LBBP is superior in maintaining physiological ventricular activation and can effectively improve heart function and quality of life in patients with pacemaker-induced cardiomyopathy. However, LBBP in pacing-dependent patients who already have cardiac dysfunction has not been well assessed. CASE SUMMARY: A 69-year-old male patient presented with symptoms of chest tightness, palpitation and systolic heart failure with New York Heart Association class III for 1 mo. The 12-lead electrocardiogram showed atrial fibrillation with third-degree atrioventricular block and ventricular premature beat. Holter revealed a right bundle branch block, atrial fibrillation with third-degree atrioventricular block, frequent multifocal ventricular premature beats, Ron-T and ventricular tachycardia. The echocardiogram documented an enlarged left atrium and left ventricle and a low left ventricular ejection fraction. Coronary angiography indicated a stenosis of 30% in the middle left anterior descending artery. Apparently, a CRT-D pacemaker was the best choice for this patient according to previous findings. However, the patient was worried about the financial burden. A single-chamber pacemaker with LBBP was selected, with the plan to take amiodarone and upgrade with dual-chamber implantable cardioverter-defibrillator or CRT-D at an appropriate time. During the follow-up at 3 mo after LBBP, the patient showed an improvement in cardiac function with slight improvement in echocardiography parameters, and the New York Heart Association functional class was maintained at I. Moreover, the patient no longer suffered from chest tightness and palpitation. Holter showed decreased ventricular arrhythmia of less than 5%. CONCLUSION: LBBP might be used in patients with heart failure and a high-degree atrioventricular block as an alternative to conventional CRT.

13.
Indian Pacing Electrophysiol J ; 22(5): 231-234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35926684

RESUMO

BACKGROUND: Axillary vein puncture is a popular puncture site for pacemaker implantation. However, due to the lacking of body surface markers, the current puncture method is too complicated and affect the popularization and application of axillary vein puncture. Here, we performed a new body surface landmark to make the blind axillary vein puncture simple and easy. METHODS: The study population included 30 patients referred for pacemaker implantation using axillary vein puncture. Digital subtraction angiography (DSA) was used to determine the direction and the surface landmarks of the axillary vein. Medial cusp of thoracic triangle and the coracoid process were directly touched with fingers. The puncture point was about 1 cm below the coracoid, and the needle tip pointed to the medial cusp of thoracic triangle with the angle of 30-60°. RESULTS: There was little variation in distribution of axillary vein. The body surface landmark of the junction of the axillary vein and the subclavian vein is on the medial cusp of thoracic triangle. In these 30 patients, blind axillary vein puncture was successful obtained in all patients. There was no pneumothorax and inadvertent arterial puncture. The pacemaker lead wire was placed smoothly. Moreover, the pacemaker pocket was ideally positioned when cut along the puncture point. CONCLUSIONS: Blind axillary vein access using the body surface landmark of the thoracic triangle is an effective method for pacemaker implantation and can obvious avoid the complications usually observed with the traditional subclavian vein approach.

14.
Ecotoxicol Environ Saf ; 238: 113556, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35489293

RESUMO

Natural odour compounds could be a potential alternative to synthetic herbicides. The odour compound of Periploca sepium Bunge, named 2-hydroxy-4-methoxy-benzaldehyde (HMB), is a herbicidal compound. However, its herbicidal mechanism is unclear. In this experiment, the physiological and biochemical indices, ultrastructure, and photosynthetic function of the leaves of Humulus scandens (Lour.) Merr. treated by HMB were assessed to elucidate the herbicidal mechanism. The results of physiological and biochemical indices are as follows: First, after 4 h of treatment with 2.5 and 5.0 mg/mL, the damage rates in the membrane permeation assay were 74.7% and 89.1%, respectively. Second, compared to the negative control group, multiple physiological and biochemical indices of the two treated groups were changed, including catalase content (-18.5 and -26.5 ng/mL), superoxide dismutase content (-27.4 and -56.6 ng/mL), peroxidase content (382.0 and 880.0 ng/mL), reactive oxygen species content (16.7 and 27.2 ng/mL), malondialdehyde content (8.9 and 25.2 nmol/g), and water potential values (0.2 and 0.3 MPa), except for the photosynthetic pigment contents (chlorophyll a, b, and carotene). Furthermore, the results of transmission electron microscopy showed that the organelles in the mesophyll tissue cells disappeared and severe plasmolysis led to cell atrophy after 4 h of treatment. There were fewer starch granules after 24 h of treatment, but there was no obvious abnormality in the upper and lower epidermal cells. The results of photosynthetic function showed that in the light response, the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and stomatal limitation value of the tested leaves were lower than those of the negative control group by 26.6 µmol·m-2·s-1, 7.7 mmol·m-2·s-1, 0.9 mol·m-2·s-1, and 0.2, respectively. However, the intercellular CO2 concentration (Ci) increased and was higher than the air CO2 concentration. In the CO2 response, the Pn, Tr and Gs of the tested leaves first increased and then decreased, but the Ci value continuously increased and finally reached 1727.5 µmol·mol-1. It is obvious that HMB may have inhibited the effect on the photosynthetic system of the tested leaves. Overall, HMB killed the weeds by destroying the structure and multiple physiological functions of the tested leaves.


Assuntos
Humulus , Periploca , Dióxido de Carbono , Clorofila , Clorofila A , Odorantes , Periploca/fisiologia , Fotossíntese , Folhas de Planta/fisiologia
15.
mSystems ; 6(5): e0046221, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34609170

RESUMO

Trehalose biosynthesis pathway is a potential target for antifungal drug development, and trehalose 6-phosphate (T6P) accumulation is widely known to have toxic effects on cells. However, how organisms maintain a safe T6P level and cope with its cytotoxicity effects when accumulated have not been reported. Herein, we unveil the mechanism by which the rice blast fungus Magnaporthe oryzae avoids T6P accumulation and the genetic and physiological adjustments it undergoes to self-adjust the metabolite level when it is unavoidably accumulated. We found that T6P accumulation leads to defects in fugal development and pathogenicity. The accumulated T6P impairs cell wall assembly by disrupting actin organization. The disorganization of actin impairs the distribution of chitin synthases, thereby disrupting cell wall polymer distribution. Additionally, accumulation of T6P compromise energy metabolism. M. oryzae was able to overcome the effects of T6P accumulation by self-mutation of its MoTPS3 gene at two different mutation sites. We further show that mutation of MoTPS3 suppresses MoTps1 activity to reduce the intracellular level of T6P and partially restore ΔMotps2 defects. Overall, our results provide insights into the cytotoxicity effects of T6P accumulation and uncover a spontaneous mutation strategy to rebalance accumulated T6P in M. oryzae. IMPORTANCE M. oryzae, the causative agent of the rice blast disease, threatens rice production worldwide. Our results revealed that T6P accumulation, caused by the disruption of MoTPS2, has toxic effects on fugal development and pathogenesis in M. oryzae. The accumulated T6P impairs the distribution of cell wall polymers via actin organization and therefore disrupts cell wall structure. M. oryzae uses a spontaneous mutation to restore T6P cytotoxicity. Seven spontaneous mutation sites were found, and a mutation in MoTPS3 was further identified. The spontaneous mutation in MoTPS3 can partially rescue ΔMotps2 defects by suppressing MoTps1 activity to alleviate T6P cytotoxicity. This study provides clear evidence for better understanding of T6P cytotoxicity and how the fungus protects itself from T6P's toxic effects when it has accumulated to severely high levels.

16.
J Agric Food Chem ; 69(39): 11656-11664, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34554738

RESUMO

As the major contributors to the floral odors of tea products, terpenoid volatiles play critical roles in the defense response of plants to multiple stresses. Until now, only a few TPS genes in tea plants (Camellia sinensis) have been functionally validated. In this study, by comparative studies conducted at gene, protein, and metabolite levels during oolong tea processing, we isolated an ocimene synthase gene, CsOCS, which displays a low similarity to previously characterized tea ocimene synthases. Further prokaryotic expression and subcellular localization analysis showed that it is plastid-located and could produce (E)-ß-ocimene and (Z)-ß-ocimene using GPP as the substrate. The optimum temperature and pH of the enzyme were 30 °C and 7.5, respectively. Treatment with exogenous methyl jasmonate elevated the transcript level of CsOCS and enhanced the emission of ocimene from tea leaves. Collectively, CsOCS is implicated as a key enzyme for ß-ocimene synthesis during oolong tea processing.


Assuntos
Camellia sinensis , Monoterpenos Acíclicos , Alcenos , Folhas de Planta , Proteínas de Plantas/genética , Chá
17.
Cardiovasc Toxicol ; 21(10): 859-868, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313957

RESUMO

Doxorubicin (DOX) is an antineoplastic agent that is widely employed in carcinomas, but it can cause cardiotoxicity in clinic. TRIM25 has E3 ubiquitin ligase activities and can ubiquitinate its target proteins. The role of TRIM25 in DOX-induced cardiotoxicity remains unknown. In this study, our results showed that DOX induced pyroptosis of H9c2 cells by TUNEL staining and Western blot assay. Interestingly, TRIM25 was downregulated in DOX-treated H9c2 cells in a time- and dose-dependent manner. TRIM25 attenuated DOX-induced pyroptosis of H9c2 cells. Furthermore, in vitro ubiquitination assay proved that TRIM25 decreased the stability of NLRP1 via promoting the ubiquitination of NLRP1. The rescue experiments confirmed that TRIM25 inhibited DOX-induced H9c2 cells pyroptosis by regulating NLRP1 stability. Animal experiments demonstrated that overexpression of TRIM25 attenuated DOX-induced cardiomyocyte pyroptosis in rats. In summary, TRIM25 exerts its cardioprotective effects by promoting the ubiquitination of NLRP1 in DOX-induced cardiomyocyte pyroptosis, which provides a novel therapeutic strategy for DOX-induced cardiotoxicity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Cardiopatias/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Piroptose , Fatores de Transcrição/metabolismo , Animais , Antibióticos Antineoplásicos , Cardiotoxicidade , Linhagem Celular , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Doxorrubicina , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar , Fatores de Tempo , Fatores de Transcrição/genética , Ubiquitinação
18.
Cancer Genet ; 256-257: 40-47, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33887693

RESUMO

Clear cell renal cell carcinoma (ccRCC), with an increasing incidence rate, is one of the ubiquitous cancers. Its pathogenic factors are complicated and the molecular mechanism is not clear. It is essential to analyze the potential key genes related to ccRCC carcinogenesis. In this study, the differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) of ccRCC were screened from TCGA database. Then the miRNA-mRNA network, lncRNA-miRNA network and lncRNA-mRNA network were constructed by online database or WGCNA algorithm. Topology attributes of these monolayer networks showed that hsa-mir-155, hsa-mir-200c, hsa-mir-122, hsa-mir-506, hsa-mir-216b, hsa-mir-141, lncRNA AC137723.1 and AC021074.3 are the crucial genes related with the regulatory effects on the proliferation, metastasis and invasion of ccRCC cells. Subsequently, these three monolayer networks were integrated into a lncRNA-miRNA-mRNA multilayer network. Considering node degree, closeness centrality and betweenness centrality, we found hsa-mir-122 is screened out as the only crucial gene in three-layer network. In order to better illustrate the effect of hsa-mir-122 on ccRCC, the lncRNA-hsa-mir-122-mRNA network was constructed with hsa-mir-122 as the center. Pathway analysis of the unique target gene GALNT3 linked to hsa-mir-122 showed that GALNT3 influenced the metabolic process of mucin type O-Glycan biosynthesis. LncRNA AC090377.1 is the unique gene that has target genes among lncRNAs with clinical significance that linked to hsa-mir-122 in the lncRNA-hsa-mir-122-mRNA network. Pathway analysis of AC090377.1 suggested that GUCY2F enriched in phototransduction pathway associated with retina. From monolayer network to three-layer network, hsa-mir-122 is identified as an important molecule in the oncogenesis and progression of ccRCC, offering new strategies to further study of the carcinogenic mechanism of ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Redes Reguladoras de Genes , Neoplasias Renais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Análise de Sobrevida
19.
Ecotoxicol Environ Saf ; 215: 112131, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33752163

RESUMO

The odor compound from Periploca sepium Bunge, 2-hydroxy-4-methoxy-benzaldehyde (HMB), is an allelochemical agent and is one of the least investigated isomers of vanillin. In this study, we used label-free quantitative proteomics analysis technology to investigate the effect of HMB on the protein expression of Humulus scandens (Lour.) Merr. leaves in July 2019 on Guiyang. A total of 269 proteins of 624 identified proteins were differentially expressed, among which 21.18% of the proteins were up-regulated and 32.71% down-regulated. These proteins were classified into 11 cell components and more than 20% of differentially expressed proteins were located in cell membrane and chloroplast. Functional classification analysis showed that 12 molecular functions were altered upon HMB treatment, and the ratio of catalytic activity was the highest (19.53%). At least 12 biological functions were affected, which involved small molecule metabolic processes, organic substance metabolic processes, gene expression, and photosynthesis. Our data provide resources and insights into the biochemical mechanism by which HMB kills weeds.


Assuntos
Humulus/fisiologia , Odorantes/análise , Periploca/fisiologia , Folhas de Planta/química , Benzaldeídos , China , Periploca/química , Fotossíntese , Proteoma/metabolismo , Proteômica
20.
Biosystems ; 204: 104372, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33582210

RESUMO

Suitable biomarkers can be good indicator for cancer subtype. To find biomarkers that can accurately distinguish clear cell renal cell carcinoma (ccRCC) subtypes, we first determined ccRCC subtypes based on the expression of mRNA, miRNA and lncRNA, named clear cell type 1 (ccluster1) and 2 (ccluster2), using three unsupervised clustering algorithms. Besides being associated with the expression pattern derived from the single type of RNA, the differences between subtypes are relevant to the interactions between RNAs. Then, based on ceRNA network, the optimal combination features are selected using random forest and greedy algorithm. Further, in survival-related sub-ceRNA, competing gene pairs centering on miR-106a, miR-192, miR-193b, miR-454, miR-32, miR-98, miR-143, miR-145, miR-204, miR-424 and miR-1271 can also well identify ccluster1 and ccluster2 with prediction accuracy over 92%. These subtype-specific features potentially enhance the accuracy with which machine learning methods predict specific ccRCC subtypes. Simultaneously, the changes of miR-106 and OIP5-AS1 affect cell proliferation and the prognosis of ccluster1. The changes of miR-145 and FAM13A-AS1 in ccluster2 have an effect on cell invasion, apoptosis, migration and metabolism function. Here miR-192 displays a unique characteristic in both subtypes. Two subtypes also display notable differences in diverse pathways. Tumors belonging to ccluster1 are characterized by Fc gamma R-mediated phagocytosis pathway that affects tissue remodeling and repair, whereas those belonging to ccluster2 are characterized by EGFR tyrosine kinase inhibitor resistance pathway that participates in regulation of cell homeostasis. In conclusion, identifying these gene pairs can shed light on therapeutic mechanisms of ccRCC subtypes.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Apoptose/genética , Carcinoma de Células Renais/classificação , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Proliferação de Células/genética , Análise por Conglomerados , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Renais/classificação , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Aprendizado de Máquina , MicroRNAs/metabolismo , Invasividade Neoplásica , Fagocitose/genética , Inibidores de Proteínas Quinases/uso terapêutico , RNA Longo não Codificante/metabolismo , Taxa de Sobrevida , Aprendizado de Máquina não Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...