Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Autoimmun ; 146: 103232, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692172

RESUMO

The link between type I IFN and adaptive immunity, especially T-cell immunity, in JDM still remained largely unclear. This study aimed to understand the effect of elevated type I IFN signaling on CD8+ T cell-associated muscle damage in juvenile dermatomyositis (JDM). This study used flow cytometry (FC) and RT‒PCR were used to examine the circulating cell ratio and type I IFN response. And scRNA-seq was used to examine peripheral immunity in 6 active JDM patients, 3 stable JDM patients, 3 juvenile IMNM patients and 3 age-matched healthy children. In vivo validation experiments were conducted using a mouse model induced by STING agonists and an experimental autoimmune myositis model (EAM). In vitro experiments were conducted using isolated CD8+ T-cells from JDM patients and mice. We found that active JDM patients showed an extensive type I IFN response and a decreased CD8+ T-cell ratio in the periphery (P < 0.05), which was correlated with muscle involvement (P < 0.05). Both new active JDM patients and all active JDM patients showed decreased CD8+ TCM cell ratios compared with age and gender matched stable JDM patients (P < 0.05). Compared with new pediatirc systemic lupus erythematosus (SLE) patients, new active JDM patients displayed decreased CD8+ T-cell and CD8+ TCM cell ratios (P < 0.05). Active JDM patient skeletal muscle biopsies displayed an elevated type I IFN response, upregulated MHC-I expression and CD8+ T-cell infiltration, which was validated in EAM mice. sc-RNAseq demonstrated that type I IFN signalling is the kinetic factor of abnormal differentiation and enhances the cytotoxicity of peripheral CD8+ T cells in active JDM patients, which was confirmed by in vivo and in vitro validation experiments. In summary, the elevated type I IFN signalling affected the differentiation and function of CD8+ T cells in active JDM patients. Skeletal muscle-infiltrating CD8+ T cells might migrate from the periphery under the drive of type I IFN and increased MHC I signals. Therapies targeting autoantigen-specific CD8+ T cells may represent a potential new treatment direction.

2.
Bone ; 183: 117094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582289

RESUMO

The present study aimed to establish and evaluate a preclinical model of steroid-associated osteonecrosis (SAON) in mice. Sixteen 24-week-old male C57BL/6 mice were used to establish SAON by two intraperitoneal injections of lipopolysaccharide (LPS), followed by three subcutaneous injections of methylprednisolone (MPS). Each injection was conducted on working day, with an interval of 24 h. Six cycles of injections were conducted. Additional twelve mice (age- and gender-matched) were used as normal controls. At 2 and 6 weeks after completing induction, bilateral femora and bilateral tibiae were collected for histological examination, micro-CT scanning, and bulk RNA sequencing. All mice were alive until sacrificed at the indicated time points. The typical SAON lesion was identified by histological evaluation at week 2 and week 6 with increased lacunae and TUNEL+ osteocytes. Micro-CT showed significant bone degeneration at week 6 in SAON model. Histology and histomorphometry showed significantly lower Runx2+ area, mineralizing surface (MS/BS), mineral apposition rate (MAR), bone formation rate (BFR/BS), type H vessels, Ki67+ (proliferating) cells, and higher marrow fat fraction, osteoclast number and TNFα+ areas in SAON group. Bulk RNA-seq revealed changed canonical signaling pathways regulating cell cycle, angiogenesis, osteogenesis, and osteoclastogenesis in the SAON group. The present study successfully established SAON in mice with a combination treatment of LPS and MPS, which could be considered a reliable and reproducible animal model to study the pathophysiology and molecular mechanism of early-stage SAON and to develop potential therapeutic approaches for the prevention and treatment of SAON.


Assuntos
Lipopolissacarídeos , Osteonecrose , Masculino , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Osteonecrose/tratamento farmacológico , Esteroides , Osteogênese , Metilprednisolona/uso terapêutico
3.
ACS Cent Sci ; 10(3): 628-636, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559293

RESUMO

Angelica sinensis, commonly known as Dong Quai in Europe and America and as Dang-gui in China, is a medicinal plant widely utilized for the prevention and treatment of osteoporosis. In this study, we report the discovery of a new category of phthalide from Angelica sinensis, namely falcarinphthalides A and B (1 and 2), which contains two fragments, (3R,8S)-falcarindiol (3) and (Z)-ligustilide (4). Falcarinphthalides A and B (1 and 2) represent two unprecedented carbon skeletons of phthalide in natural products, and their antiosteoporotic activities were evaluated. The structures of 1 and 2, including their absolute configurations, were established using extensive analysis of NMR spectra, chemical derivatization, and ECD/VCD calculations. Based on LC-HR-ESI-MS analysis and DFT calculations, a production mechanism for 1 and 2 involving enzyme-catalyzed Diels-Alder/retro-Diels-Alder reactions was proposed. Falcarinphthalide A (1), the most promising lead compound, exhibits potent in vitro antiosteoporotic activity by inhibiting NF-κB and c-Fos signaling-mediated osteoclastogenesis. Moreover, the bioinspired gram-scale total synthesis of 1, guided by intensive DFT study, has paved the way for further biological investigation. The discovery and gram-scale total synthesis of falcarinphthalide A (1) provide a compelling lead compound and a novel molecular scaffold for treating osteoporosis and other metabolic bone diseases.

4.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512413

RESUMO

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Assuntos
Remodelação Óssea , Glucocorticoides , Osteogênese , Animais , Camundongos , Glucocorticoides/farmacologia , Osteogênese/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Ácidos Graxos/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/imunologia , Microambiente Celular/efeitos dos fármacos
5.
Adv Mater ; : e2308875, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091500

RESUMO

Osteosarcoma (OS) is the most commonly occurring primary bone malignant tumor. The clinical postsurgical OS treatment faces big challenges for the staged therapeutic requirements of early anti-tumor, anti-bacterial, and long-lasting osteogenesis. Herein, multi-functional bioactive scaffolds with time-sequential functions of preventing tumor recurrence, inhibiting bacterial infection, and promoting bone defect repair are designed as a novel strategy. Nanocomposite scaffold magnesium peroxide (MgO2 )/poly (lactide-co-glycolide) is prepared by low-temperature 3D printing for controllable releasing magnesium ions (Mg2+ ) and reactive oxygen species in a time-sequential manner. The scaffold with 20 wt% MgO2 (20MP) is verified with desired mechanical properties, as well as exhibits staged release behavior of bioactive elements with hydrogen peroxide (H2 O2 ) release for the first 3 weeks, and long-lasting Mg2+ release for 12 weeks. The released H2 O2 initiates chemodynamic therapy to induce apoptosis and ferroptosis in tumor cells, along with activating the anticancer immune microenvironment by M1 polarization of macrophages. The released Mg2+ subsequently enhances bone repair by activating the Wnt3a/GSK-3ß/ß-catenin signaling pathway to promote osteogenic differentiation of bone marrow mesenchymal stem cells and create osteopromotive immune microenvironment by M2 polarization of macrophages. In conclusion, the multi-functional 20MP scaffold demonstrates time-sequential therapeutic properties as an innovative strategy for OS-associated bone defect treatment.

6.
Bone ; 167: 116645, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539110

RESUMO

Destructive repair characterized by inadequate angiogenesis and osteogenesis is the main pathological progression in steroid-associated osteonecrosis of the femoral head (SONFH). Platelet-derived growth factor-BB (PDGF-BB) is an "angiogenesis and osteogenesis coupling" factor that has been used for the treatment of bone defects in clinic. This study was designed to analyze the ability of PDGF-BB for preventing destructive repair and promoting reparative osteogenesis in SONFH. Steroid-associated osteonecrosis (SAON) was induced and triggered destructive repair of the femoral head by repeated lipopolysaccharide (LPS) and methylprednisolone (MPS) injections in rabbits. At 2, 4, and 6 weeks after induction, recombinant human PDGF-BB, neutralizing PDGF-BB antibody, or saline was intramedullary injected into the proximal femora. At week 6 after SAON induction, the proximal femora were dissected for bone architecture and histological analysis. C3H10T1/2 cells and HUVECs were used for further mechanistic investigation. After PDGF-BB treatment, type H vessels and leptin receptor-positive (LepR+) mesenchymal stem cells (MSCs) increased in the affected femoral head, and more osteoblastic osteogenesis along the bone surfaces but scattered adipocytes in bone marrow tissue than that in the SAON group. PDGF-BB treatment prevented destructive repair progression and led to 50-70 % of osteonecrotic femoral heads undergoing reparative osteogenesis. In particular, we found that PDGF-BB could mediate MSC self-renewal and maintain their osteogenic potency by activating PDGFR/Akt/GSK3ß/CERB signaling in the presence of steroids. Moreover, PDGF-BB also stabled the newly formed vascular tubes by recruiting MSCs for improving intraosseous vascular integration. PDGF-BB may be a candidate for the promotion of reparative osteogenesis in SONFH.


Assuntos
Osteogênese , Osteonecrose , Animais , Coelhos , Humanos , Becaplermina , Cabeça do Fêmur/patologia , Esteroides
7.
Bioact Mater ; 19: 487-498, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35600973

RESUMO

The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing. Recently, the combination of implanted stem cells, suitable biomaterials and bioactive molecules has attracted attention for tissue regeneration. In this study, a novel injectable nanocomposite was rationally designed as a sustained release platform for enhanced cartilage regeneration through integration of a chitosan-based hydrogel, articular cartilage stem cells (ACSCs) and mesoporous SiO2 nanoparticles loaded with anhydroicaritin (AHI). The biocompatible engineered nanocomposite acting as a novel 3D biomimetic extracellular matrix exhibited a remarkable sustained release effect due to the synergistic regulation of the organic hydrogel framework and mesopore channels of inorganic mSiO2 nanoparticles (mSiO2 NPs). Histological assessment and biomechanical tests showed that the nanocomposites exhibited superior performance in inducing ACSCs proliferation and differentiation in vitro and promoting extracellular matrix (ECM) production and cartilage regeneration in vivo. Such a novel multifunctional biocompatible platform was demonstrated to significantly enhance cartilage regeneration based on the sustained release of AHI, an efficient bioactive natural small molecule for ACSCs chondrogenesis, within the hybrid matrix of hydrogel and mSiO2 NPs. Hence, the injectable nanocomposite holds great promise for use as a 3D biomimetic extracellular matrix for tissue regeneration in clinical diagnostics.

9.
Pharmaceutics ; 14(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365215

RESUMO

Reconstruction of a mandibular defect is challenging, with high expectations for both functional and esthetic results. Bone morphogenetic protein-2 (BMP-2) is an essential growth factor in osteogenesis, but the efficacy of the BMP-2-based strategy on the bone regeneration of mandibular defects has not been well-investigated. In addition, the underlying mechanisms of BMP-2 that drives the bone formation in mandibular defects remain to be clarified. Here, we utilized BMP-2-loaded hydrogel to augment bone formation in a critical-size mandibular defect model in rats. We found that implantation of BMP-2-loaded hydrogel significantly promoted intramembranous ossification within the defect. The region with new bone triggered by BMP-2 harbored abundant CD31+ endomucin+ type H vessels and associated osterix (Osx)+ osteoprogenitor cells. Intriguingly, the new bone comprised large numbers of skeletal stem cells (SSCs) (CD51+ CD200+) and their multi-potent descendants (CD51+ CD105+), which were mainly distributed adjacent to the invaded blood vessels, after implantation of the BMP-2-loaded hydrogel. Meanwhile, BMP-2 further elevated the fraction of CD51+ CD105+ SSC descendants. Overall, the evidence indicates that BMP-2 may recapitulate a close interaction between functional vessels and SSCs. We conclude that BMP-2 augmented coupling of angiogenesis and osteogenesis in a novel and indispensable way to improve bone regeneration in mandibular defects, and warrants clinical investigation and application.

10.
J Orthop Translat ; 35: 87-98, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36196075

RESUMO

Background: Sarcopenia is an age-related skeletal muscle dysfunction syndrome that is lacking validated treatments. Maximizing muscle strength in young adulthood may be a promising way to prevent sarcopenia in the elderly. The phytomolecule puerarin has been extensively used in clinical practice and reported to increase energy metabolism in skeletal muscle by directly targeting the skeletal muscle fiber. However, the bioavailability of puerarin is very poor, and almost 93% of puerarin stays in the intestine until excretion. Therefore, we hypothesize that puerarin may regulate gut microbiota to improve skeletal muscle strength and/or mass in adults. Methods: Twenty three-month old male Sprague Dawley rats were divided into two groups according to average weights, puerarin group (puerarin dissolved in 0.5% CMC-Na, 150 â€‹mg/kg/day, N â€‹= â€‹10), and control group (equal volume 0.5% CMC-Na, N â€‹= â€‹10). The treatment lasted for 8 weeks. Muscle weight, muscle fiber types and cross-sectional area (CSA), ex vivo muscle contraction test and grip strength were measured. 16S rDNA sequencing was employed to evaluate the gut microbiota composition in the sample of cecal content. Short-chain fatty acids (SCFAs) in cecal and serum were analyzed by gas chromatography-mass spectrometry. Adenosine triphosphate (ATP) concentration in skeletal muscle was also detected. Pearson's correlation was used to analyze the relations between SCFAs, ATP concentration and muscle function. Results: After puerarin treatment, grip strength, the specific twitch force, and the tetanic forces in the soleus (SOL) and extensor digitorum longus (EDL) muscle were significantly higher than those of the control group. The percentage and CSA of type II muscle fiber in EDL was higher in the puerarin group than those in the control group. Puerarin treatment significantly changed the gut microbial constitutes. Two SCFAs-productive microbiota, the families Peptococcaceae and Closteridiales, were significantly higher in the puerarin group than those in the control group, while the ratio of Prevotellaceae/Bacteroidaceae (P/B), a muscle atrophy indicator, was lower in the puerarin group. As expected, there were significant linear correlations between the concentrations of SCFAs, including cecal total SCFAs, serum n-butyric acid and total SCFAs, and skeletal muscle strength and function, including the twitch force and tetanic force of SOL and EDL, as well as the forelimb grip strength. Conclusion: In conclusion, puerarin improved the forelimb grip strength and muscle contraction function in young adult rats. The underlying mechanism may include that puerarin increased SCFAs production by regulating gut microbiota, augmented ATP synthesis and skeletal muscle strength. The translational potential of this article : Our study finds that a clinical used phytomolecule puerarin has the potential of improving skeletal muscle strength in young adult rats. As puerarin has long-term clinical experience and shows good safety, it might be a potential candidate for developing muscle strengthening agents.

11.
Bioengineering (Basel) ; 9(10)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36290493

RESUMO

We develop a poly (lactic-co-glycolic acid)/ß-calcium phosphate (PLGA/TCP)-based scaffold through a three-dimensional (3D) printing technique incorporating icaritin (ICT), a unique phytomolecule, and secretome derived from human fetal mesenchymal stem cells (HFS), to provide mechanical support and biological cues for stimulating bone defect healing. With the sustained release of ICT and HFS from the composite scaffold, the cell-free scaffold efficiently facilitates the migration of MSCs and promotes bone regeneration at the femoral defect site in the ovariectomy (OVX)-induced osteoporotic rat model. Furthermore, mechanism study results indicate that the combination of ICT and HFS additively activates the Integrin-FAK (focal adhesion kinase)-ERK1/2 (extracellular signal-regulated kinase 1/2)-Runx2 (Runt-related transcription factor 2) axis, which could be linked to the beneficial recruitment of MSCs to the implant and subsequent osteogenesis enhancement. Collectively, the PLGA/TCP/ICT/HFS (P/T/I/S) bioactive scaffold is a promising biomaterial for repairing osteoporotic bone defects, which may have immense implications for their translation to clinical practice.

12.
Adv Biol (Weinh) ; 6(12): e2200162, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36026561

RESUMO

Treatments are lacking for sarcopenia, which is an age-related disease characterized by loss of skeletal muscle mass, strength, and/or physical performance. Icariin is a phytomolecule from herbal Epimedium, a traditional Chinese medicine widely used to treat musculoskeletal disorders for thousands of years. Here the effects of icariin against sarcopenia are investigated and the underlying mechanism is elucidated. A classic rat model of bilaterally orchiectomized (ORX) is used to induce sarcopenia. After administration for 8 weeks, compared to the control group, the forelimb grip strength, the specific tetanic forces of the soleus (SOL) and extensor digitorum longus muscle (EDL) are higher, and the fiber cross-sectional areas (CSAs) of the gastrocnemius and tibialis anterior muscle are larger in the icariin group. In addition, icariin promotes mRNA and protein expressions of myosin heavy chain (MyHC) both in SOL and EDL. Mechanistically, icariin significantly suppresses the mRNA and protein expressions of FOXO3a, atrogin-1, and MuRF-1, which are related to the degradation of myosin heavy chain. Collectively, icariin protects from sarcopenia in ORX rats characterized by enhancing grip strength and skeletal muscle contraction, as well as increasing skeletal muscle CSA by inhibiting the ubiquitination degradation of the MyHC in skeletal muscle fibers.


Assuntos
Flavonoides , Cadeias Pesadas de Miosina , Sarcopenia , Animais , Ratos , Contração Muscular/fisiologia , Cadeias Pesadas de Miosina/genética , RNA Mensageiro/metabolismo , Sarcopenia/tratamento farmacológico , Orquiectomia , Masculino , Flavonoides/farmacologia
13.
J Orthop Translat ; 36: 52-63, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35979175

RESUMO

Objectives: Large bone defect repair is a challenging clinical problem due to limited self-repair ability. A well-designed bone filling product should possess the ability to induce tissue in-growth and facilitate neovascularization and new bone formation. Puerarin has been used in clinics for a long time, and recently it was found to be able to promote osteogenesis. This study aimed to investigate a puerarin-based drug/delivery combination implant for promoting large bone defect repair. Methods: Puerarin was incorporated into the poly (lactic-co-glycolic acid)/ß-calcium phosphate (PLGA/TCP, PT) to form a porous PLGA/TCP/Puerarin (PTP) composite scaffold by low-temperature rapid prototyping technology. Its structural and degradation were analyzed in vitro. Then we employed a rat calvarial critical size defect model to assess the potency of the PTP scaffold. MC3T3-E1 cells and EA. hy 926 â€‹cells were used to investigate the underlying mechanism. Results: PTP scaffold inherited all advantages of PT scaffold in structural, mechanical, and biodegradation, meanwhile puerarin stably and continuously released from PTP scaffold and lasted for 5 months in vitro. At 8 weeks after implantation, the PTP scaffold triggered new bone formation in the macro-pores of the scaffold and inside the scaffold accompanied by the degrading materials. The underlying mechanism revealed that the PTP scaffold induced vascular infiltration and recruit repair cells through stimulating vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) expressions to promote angiogenesis and osteogenesis. Conclusion: Puerarin-enriched porous PTP scaffold was a promising local delivery system with sustained release of puerarin for facilitating defect repair through getting synergistic angiogenic and osteogenic effects. The Translational Potential of this Article: The PTP scaffold presents a potential drug/device combination medical implant for large bone defect repair, which also provides a new and innovative application for the "old drug" puerarin.

14.
Arthritis Res Ther ; 24(1): 105, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545776

RESUMO

Osteoarthritis (OA) is one of the most common musculoskeletal degenerative diseases and contributes to heavy socioeconomic burden. Current pharmacological and conventional non-pharmacological therapies aim at relieving the symptoms like pain and disability rather than modifying the underlying disease. Surgical treatment and ultimately joint replacement arthroplasty are indicated in advanced stages of OA. Since the underlying mechanisms of OA onset and progression have not been fully elucidated yet, the development of novel therapeutics to prevent, halt, or reverse the disease is laborious. Recently, small molecules of herbal origin have been reported to show potent anti-inflammatory, anti-catabolic, and anabolic effects, implying their potential for treatment of OA. Herein, the molecular mechanisms of these small molecules, their effect on physiological or pathological signaling pathways, the advancement of the extraction methods, and their potential clinical translation based on in vitro and in vivo evidence are comprehensively reviewed.


Assuntos
Artroplastia de Substituição , Osteoartrite , Anti-Inflamatórios/uso terapêutico , Humanos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Dor/tratamento farmacológico , Transdução de Sinais
15.
Regen Biomater ; 9: rbac011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480856

RESUMO

Osteoporosis is a common skeletal disease making patients be prone to the osteoporotic fracture. However, the clinical implants made of titanium and its alloys with a poor osseointegration need a long time for healing and easily to loosening. Thus, a new class of Cu-alloyed titanium (TiCu) alloys with excellent mechanical properties and bio-functionalization has been developed. In this study, the osteoporosis modeled rats were used to study the osteointegration effect and underlying mechanism of TiCu. The results showed that after implantation for 4 weeks, TiCu alloy could promote the reconstruction of vascular network around the implant by up-regulating vascular endothelial growth factor expression. After 8 weeks, it could further promote the proliferation and differentiation of osteoblasts, mineralization and deposition of collagens, and then significantly increasing bone mineral density around the implant. In conclusion, TiCu alloy would enhance the fixation stability, accelerate the osteointegration, and thus reduce the risk of aseptic loosening during the long-term implantation in the osteoporosis environment. This study was the first to report the role and mechanism of a Cu-alloyed metal in promoting osteointegration in osteoporosis environment, which provides a new attractive support for the improvement of future clinical applications of Cu-alloyed antibacterial titanium alloys.

16.
J Orthop Translat ; 33: 55-69, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35228997

RESUMO

OBJECTIVE: Given the limitations of current anti-resorption agents for postmenopausal osteoporosis, there is a need for alternatives without impairing coupling crosstalk between bone resorption and bone formation ie. osteoclastogenesis. Puerarin, a unique C-glycoside isoflavonoid, was found to be able to prevent bone loss by inhibiting bone resorption, but the underlying mechanism was controversial. In this study, we investigated the effects of puerarin on osteoclastic differentiation, activation and bone resorption and its underlying molecular mechanism in vitro, and then evaluated the effects of puerarin on bone metabolism using an ovariectomized (OVX) rat model. METHODS: In vitro, the effect of puerarin on osteoclastic cytotoxicity, differentiation, apoptosis, activation and function were studied in raw 264.7 â€‹cells and mouse BMMs. Mechanistically, osteoclast-related makers were determined by RT-PCR, western blot, immunofluorescence, and kinase activity assay. In vivo, Micro-CT, histology, serum bone biomarker, and mechanical testing were used to evaluate the effects of puerarin on preventing osteoporosis. RESULTS: Puerarin significantly inhibited osteoclast activation and bone resorption, without affecting osteoclastogenesis or apoptosis. In terms of mechanism, the expressions of protein of integrin-ß3 and phosphorylations of Src, Pyk2 and Cbl were lower in puerarin group than those in the control group. Oral administration of puerarin prevented OVX-induced trabecular bone loss and significantly improved bone strength in rats. Moreover, puerarin significantly decreased trap positive osteoclast numbers and serum TRAP-5b, CTx1, without affecting bone formation rate. CONCLUSIONS: Collectively, puerarin prevented the bone loss in OVX rat through suppression of osteoclast activation and bone resorption, by inhibiting integrin-ß3-Pyk2/Cbl/Src signaling pathway, without affecting osteoclasts formation or apoptosis. TRANSLATIONAL POTENTIAL OF THIS ARTICLE: These results demonstrate the unique mechanism of puerarin on bone metabolism and provide a novel agent for prevention of postmenopausal osteoporosis.

17.
Bioact Mater ; 8: 381-395, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34541408

RESUMO

This work was focused on study of anti-infection ability and its underlying mechanism of a novel dental implant made of titanium-copper (TiCu) alloy. In general, most studies on antibacterial implants have used a single pathogen to test their anti-infection ability using infectious animal models. However, dental implant-associated infections are polymicrobial diseases. We innovatively combine the classic ligature model in dogs with sucrose-rich diets to induce oral infections via the canine native oral bacteria. The anti-infection ability, biocompatibility and underlying mechanism of TiCu implant were systematically investigated in comparison with pure Ti implant via general inspection, hematology, imageology (micro-CT), microbiology (16S rDNA and metagenome), histology, and Cu ion detections. Compared with Ti implant, TiCu implant demonstrated remarkable anti-infection potentials with excellent biocompatibility. Additionally, the underlying anti-infection mechanism of TiCu implant was considered to involve maintaining the oral microbiota homeostasis. It was found that the carbohydrates in the plaques formed on the surface of TiCu implant were metabolized through the tricarboxylic acid cycle (TCA) cycles, which prevented the formation of an acidic microenvironment and inhibited the accumulation of acidogens and pathogens, thereby maintaining the microflora balance between aerobic and anaerobic bacteria.

18.
J Orthop Translat ; 31: 41-51, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804799

RESUMO

OBJECTIVES: Vascularization is an essential step in successful bone tissue engineering. The induction of angiogenesis in bone tissue engineering can be enhanced through the delivery of therapeutic agents that stimulate vessel and bone formation. In this study, we show that cucurbitacin B (CuB), a tetracyclic terpene derived from Cucurbitaceae family plants, facilitates the induction of angiogenesis in vitro. METHODS: We incorporated CuB into a biodegradable poly (lactide-co-glycolide) (PLGA) and ß-tricalcium phosphate (ß-TCP) biomaterial scaffold (PT/CuB) Using 3D low-temperature rapid prototyping (LT-RP) technology. A rat skull defect model was used to verify whether the drug-incorporated scaffold has the effects of angiogenesis and osteogenesis in vivo for the regeneration of bone defect. Cytotoxicity assay was performed to determine the safe dose range of the CuB. Tube formation assay and western blot assay were used to analyze the angiogenesis effect of CuB. RESULTS: PT/CuB scaffold possessed well-designed bio-mimic structure and improved mechanical properties. CuB was linear release from the composite scaffold without affecting pH value. The results demonstrated that the PT/CuB scaffold significantly enhanced neovascularization and bone regeneration in a rat critical size calvarial defect model compared to the scaffold implants without CuB. Furthermore, CuB stimulated angiogenic signaling via up-regulating VEGFR2 and VEGFR-related signaling pathways. CONCLUSION: CuB can serve as promising candidate compound for promoting neovascularization and osteogenesis, especially in tissue engineering for repair of bone defects. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: This study highlights the potential use of CuB as a therapeutic agent and strongly support its adoption as a component of composite scaffolds for tissue-engineering of bone repair.

19.
Biomaterials ; 279: 121216, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34739982

RESUMO

Osteochondral defect repair in osteoarthritis (OA) remains an unsolved clinical problem due to the lack of enough seed cells in the defect and chronic inflammation in the joint. To address this clinical need, we designed a bone marrow-derived mesenchymal stem cell (BMSC)-laden 3D-bioprinted multilayer scaffold with methacrylated hyaluronic acid (MeHA)/polycaprolactone incorporating kartogenin and ß-TCP for osteochondral defect repair within each region. BMSC-laden MeHA was designed to actively introduce BMSCs in situ, and diclofenac sodium (DC)-incorporated matrix metalloproteinase-sensitive peptide-modified MeHA was induced on the BMSC-laden scaffold as an anti-inflammatory strategy. BMSCs in the scaffolds survived, proliferated, and produced large amounts of cartilage-specific extracellular matrix in vitro. The effect of BMSC-laden scaffolds on osteochondral defect repair was investigated in an animal model of medial meniscectomy-induced OA. BMSC-laden scaffolds facilitated chondrogenesis by promoting collagen II and suppressed interleukin 1ß in osteochondral defects of the femoral trochlea. Congruently, BMSC-laden scaffolds significantly improved joint function of the injured leg with respect to the ground support force, paw grip force, and walk gait parameters. Therefore, this research demonstrates the potential of 3D-bioprinted BMSC-laden scaffolds to simultaneously inhibit joint inflammation and promote cartilage defect repair in OA joints.


Assuntos
Bioimpressão , Cartilagem Articular , Células-Tronco Mesenquimais , Alicerces Teciduais , Animais , Biomimética , Condrogênese , Colágeno , Impressão Tridimensional , Ratos , Engenharia Tecidual
20.
BMC Complement Med Ther ; 21(1): 212, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404395

RESUMO

BACKGROUND: Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS: A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS: In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION: Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.


Assuntos
Envelhecimento , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...