Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Nat Genet ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693345

RESUMO

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

2.
Nat Protoc ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491145

RESUMO

As different taxa evolve, gene order often changes slowly enough that chromosomal 'blocks' with conserved gene orders (synteny) are discernible. The MCScanX toolkit ( https://github.com/wyp1125/MCScanX ) was published in 2012 as freely available software for the detection of such 'colinear blocks' and subsequent synteny and evolutionary analyses based on genome-wide gene location and protein sequence information. Owing to its simplicity and high efficiency for colinear block detection, MCScanX provides a powerful tool for conducting diverse synteny and evolutionary analyses. Moreover, the detection of colinear blocks has been embraced as an integral step for pangenome graph construction. Here, new application trends of MCScanX are explored, striving to better connect this increasingly used tool to other tools and accelerate insight generation from exponentially growing sequence data. We provide a detailed protocol that covers how to install MCScanX on diverse platforms, tune parameters, prepare input files from data from the National Center for Biotechnology Information, run MCScanX and its visualization and evolutionary analysis tools, and connect MCScanX with external tools, including MCScanX-transposed, Circos and SynVisio. This protocol is easily implemented by users with minimal computational background and is adaptable to new data of interest to them. The data and utility programs for this protocol can be obtained from http://bdx-consulting.com/mcscanx-protocol .

3.
Plant Physiol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482951

RESUMO

Lamiales is an order of core eudicots with abundant diversity, and many Lamiales plants have important medicinal and ornamental values. Here, we comparatively reanalyzed 11 Lamiales species with well-assembled genome sequences and found evidence that Lamiales plants, in addition to a hexaploidization or whole-genome triplication (WGT) shared by core eudicots, experienced further polyploidization events, establishing new groups in the order. Notably, we identified a whole-genome duplication (WGD) occurred just before the split of Scrophulariaceae from the other Lamiales families, such as Acanthaceae, Bignoniaceae, and Lamiaceae, suggesting its likely being the causal reason for the establishment and fast divergence of these families. We also found that a WGT occurred ∼68-78 Mya, near the split of Oleaceae from the other Lamiales families, implying that it may have caused their fast divergence and the establishment of the Oleaceae family. Then, by exploring and distinguishing intra- and inter-genomic chromosomal homology due to recursive polyploidization and speciation, respectively, we inferred that the Lamiales ancestral cell karyotype had 11 proto-chromosomes. We reconstructed the evolutionary trajectories from these proto-chromosomes to form the extant chromosomes in each Lamiales plant under study. We must note that most of the inferred 11 proto-chromosomes, duplicated during a WGD thereafter, have been well preserved in Jacaranda (Jacaranda mimosifolia) genome, showing the credibility of the present inference implementing a telomere-centric chromosome repatterning model. These efforts are important to understand genome repatterning after recursive polyploidization, especially shedding light on the origin of new plant groups and angiosperm cell karyotype evolution.

4.
Plant Biotechnol J ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294334

RESUMO

Alternative splicing (AS), an important post-transcriptional regulation mechanism in eukaryotes, can significantly increase transcript diversity and contribute to gene expression regulation and many other complicated developmental processes. While plant gene AS events are well described, few studies have investigated the comprehensive regulation machinery of plant AS. Here, we use multi-omics to analyse peanut AS events. Using long-read isoform sequencing, 146 464 full-length non-chimeric transcripts were obtained, resulting in annotation corrections for 1782 genes and the identification of 4653 new loci. Using Iso-Seq RNA sequences, 271 776 unique splice junctions were identified, 82.49% of which were supported by transcriptome data. We characterized 50 977 polyadenylation sites for 23 262 genes, 12 369 of which had alternative polyadenylation sites. AS allows differential regulation of the same gene by miRNAs at the isoform level coupled with polyadenylation. In addition, we identified many long non-coding RNAs and fusion transcripts. There is a suppressed effect of 6mA on AS and gene expression. By analysis of chromatin structures, the genes located in the boundaries of topologically associated domains, proximal chromosomal telomere regions, inter- or intra-chromosomal loops were found to have more unique splice isoforms, higher expression, lower 6mA and more transposable elements (TEs) in their gene bodies than the other genes, indicating that chromatin interaction, 6mA and TEs play important roles in AS and gene expression. These results greatly refine the peanut genome annotation and contribute to the study of gene expression and regulation in peanuts. This work also showed AS is associated with multiple strategies for gene regulation.

5.
Opt Express ; 31(21): 34034-34044, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859168

RESUMO

In this paper, we propose an optical module, consisting of an Erbium/Ytterbium co-doped fiber amplifier (EYDFA) and a cascaded periodically poled lithium niobate (cascaded-PPLN), to bridge the conventional telecommunication and the emerging underwater wireless optical communication (UWOC). Compared with using two discrete crystals to achieve the third harmonic generation (THG), using a cascaded crystal simplifies the optical system. Under a fundamental power of 5 W at 1550 nm, we have generated an optical power of 6.54 mW at 516 nm, corresponding to a conversion efficiency of 0.1308%. Furthermore, we added a 5-km single-mode fiber (SMF) before the EYDFA, and by adjusting the seed laser power, we successfully maintained the efficiency of the THG process and the output power of the green light. Afterwards, the nonlinearity of the THG process is analyzed, and a simplified nonlinear pre-compensation method has been proposed to tailor the 4-pulse amplitude modulation (PAM4) signals. In such case, the bit error rate (BER) of the modified PAM4 (m-PAM4) can reduce by 69.3% at a data rate of 12 Gbps. Finally, we demonstrate the practicality of our proposed system by achieving a 7-m UWOC transmission in a water tank at a data rate of 13.46 Gbps in an optical dark room. This result demonstrates the feasibility of the hybrid fiber/UWOC system, highlighting its potential for practical implementation.

6.
Front Endocrinol (Lausanne) ; 14: 1162786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621654

RESUMO

Introduction: Endometriosis, a benign inflammatory disease whereby endometrial-like tissue grows outside the uterus, is a risk factor for endometriosis-associated ovarian cancers. In particular, ovarian endometriomas, cystic lesions of deeply invasive endometriosis, are considered the precursor lesion for ovarian clear-cell carcinoma (OCCC). Methods: To explore this transcriptomic landscape, OCCC from women with pathology-proven concurrent endometriosis (n = 4) were compared to benign endometriomas (n = 4) by bulk RNA and small-RNA sequencing. Results: Analysis of protein-coding genes identified 2449 upregulated and 3131 downregulated protein-coding genes (DESeq2, P< 0.05, log2 fold-change > |1|) in OCCC with concurrent endometriosis compared to endometriomas. Gene set enrichment analysis showed upregulation of pathways involved in cell cycle regulation and DNA replication and downregulation of pathways involved in cytokine receptor signaling and matrisome. Comparison of pathway activation scores between the clinical samples and publicly-available datasets for OCCC cell lines revealed significant molecular similarities between OCCC with concurrent endometriosis and OVTOKO, OVISE, RMG1, OVMANA, TOV21G, IGROV1, and JHOC5 cell lines. Analysis of miRNAs revealed 64 upregulated and 61 downregulated mature miRNA molecules (DESeq2, P< 0.05, log2 fold-change > |1|). MiR-10a-5p represented over 21% of the miRNA molecules in OCCC with endometriosis and was significantly upregulated (NGS: log2fold change = 4.37, P = 2.43e-18; QPCR: 8.1-fold change, P< 0.05). Correlation between miR-10a expression level in OCCC cell lines and IC50 (50% inhibitory concentration) of carboplatin in vitro revealed a positive correlation (R2 = 0.93). MiR-10a overexpression in vitro resulted in a significant decrease in proliferation (n = 6; P< 0.05) compared to transfection with a non-targeting control miRNA. Similarly, the cell-cycle analysis revealed a significant shift in cells from S and G2 to G1 (n = 6; P< 0.0001). Bioinformatic analysis predicted that miR-10a-5p target genes that were downregulated in OCCC with endometriosis were involved in receptor signaling pathways, proliferation, and cell cycle progression. MiR-10a overexpression in vitro was correlated with decreased expression of predicted miR-10a target genes critical for proliferation, cell-cycle regulation, and cell survival including [SERPINE1 (3-fold downregulated; P< 0.05), CDK6 (2.4-fold downregulated; P< 0.05), and RAP2A (2-3-fold downregulated; P< 0.05)]. Discussion: These studies in OCCC suggest that miR-10a-5p is an impactful, potentially oncogenic molecule, which warrants further studies.


Assuntos
Adenocarcinoma de Células Claras , Endometriose , MicroRNAs , Humanos , Feminino , Endometriose/complicações , Endometriose/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão Gênica , Adenocarcinoma de Células Claras/complicações , Adenocarcinoma de Células Claras/genética , Proteínas rap de Ligação ao GTP
7.
Plant Biotechnol J ; 21(11): 2173-2181, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37523347

RESUMO

Peanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole-genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS-LRR (nucleotide-binding site-leucine-rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.


Assuntos
Arachis , Genoma de Planta , Arachis/genética , Genoma de Planta/genética , Domesticação , Mapeamento Cromossômico , Evolução Biológica , Poliploidia
8.
Front Med (Lausanne) ; 10: 1047166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926316

RESUMO

Triple negative breast cancer (TNBC) is an aggressive sub-type of the disease which accounts for a disproportionately high percentage of breast cancer morbidities and mortalities. For these reasons, a better understanding of TNBC biology is required and the development of novel therapeutic approaches are critically needed. Estrogen receptor beta (ERß) is a reported tumor suppressor that is expressed in approximately 20% of primary TNBC tumors, where it is associated with favorable prognostic features and patient outcomes. Previous studies have shown that ERß mediates the assembly of co-repressor complexes on DNA to inhibit the expression of multiple growth promoting genes and to suppress the ability of oncogenic transcription factors to drive cancer progression. To further elucidate the molecular mechanisms by which ERß elicits its anti-cancer effects, we developed MDA-MB-231 cells that inducibly express a mutant form of ERß incapable of directly binding DNA. We demonstrate that disruption of ERß's direct interaction with DNA abolishes its ability to regulate the expression of well characterized immediate response genes and renders it unable to suppress TNBC cell proliferation. Loss of DNA binding also diminishes the ability of ERß to suppress oncogenic NFκB signaling even though it still physically associates with NFκB and other critical co-factors. These findings enhance our understanding of how ERß functions in this disease and provide a model system that can be utilized to further investigate the mechanistic processes by which ERß elicits its anti-cancer effects.

9.
bioRxiv ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778228

RESUMO

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

10.
Plant Biotechnol J ; 21(5): 1058-1072, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710373

RESUMO

The rubber tree (Hevea brasiliensis) is grown in tropical regions and is the major source of natural rubber. Using traditional breeding approaches, the latex yield has increased by sixfold in the last century. However, the underlying genetic basis of rubber yield improvement is largely unknown. Here, we present a high-quality, chromosome-level genome sequence of the wild rubber tree, the first report on selection signatures and a genome-wide association study (GWAS) of its yield traits. Population genomic analysis revealed a moderate population divergence between the Wickham clones and wild accessions. Interestingly, it is suggestive that H. brasiliensis and six relatives of the Hevea genus might belong to the same species. The selective sweep analysis found 361 obvious signatures in the domesticated clones associated with 245 genes. In a 15-year field trial, GWAS identified 155 marker-trait associations with latex yield, in which 326 candidate genes were found. Notably, six genes related to sugar transport and metabolism, and four genes related to ethylene biosynthesis and signalling are associated with latex yield. The homozygote frequencies of the causal nonsynonymous SNPs have been greatly increased under selection, which may have contributed to the fast latex yield improvement during the short domestication history. Our study provides insights into the genetic basis of the latex yield trait and has implications for genomic-assisted breeding by offering valuable resources in this new domesticated crop.


Assuntos
Hevea , Borracha , Borracha/metabolismo , Hevea/genética , Hevea/metabolismo , Látex/metabolismo , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Cromossomos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
11.
J Adv Res ; 42: 315-329, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513421

RESUMO

INTRODUCTION: Legume crops are an important source of protein and oil for human health and in fixing atmospheric N2 for soil enrichment. With an objective to accelerate much-needed genetic analyses and breeding applications, draft genome assemblies were generated in several legume crops; many of them are not high quality because they are mainly based on short reads. However, the superior quality of genome assembly is crucial for a detailed understanding of genomic architecture, genome evolution, and crop improvement. OBJECTIVES: Present study was undertaken with an objective of developing improved chromosome-length genome assemblies in six different legumes followed by their systematic investigation to unravel different aspects of genome organization and legume evolution. METHODS: We employed in situ Hi-C data to improve the existing draft genomes and performed different evolutionary and comparative analyses using improved genome assemblies. RESULTS: We have developed chromosome-length genome assemblies in chickpea, pigeonpea, soybean, subterranean clover, and two wild progenitor species of cultivated groundnut (A. duranensis and A. ipaensis). A comprehensive comparative analysis of these genome assemblies offered improved insights into various evolutionary events that shaped the present-day legume species. We highlighted the expansion of gene families contributing to unique traits such as nodulation in legumes, gravitropism in groundnut, and oil biosynthesis in oilseed legume crops such as groundnut and soybean. As examples, we have demonstrated the utility of improved genome assemblies for enhancing the resolution of "QTL-hotspot" identification for drought tolerance in chickpea and marker-trait associations for agronomic traits in pigeonpea through genome-wide association study. Genomic resources developed in this study are publicly available through an online repository, 'Legumepedia'. CONCLUSION: This study reports chromosome-length genome assemblies of six legume species and demonstrates the utility of these assemblies in crop improvement. The genomic resources developed here will have significant role in accelerating genetic improvement applications of legume crops.


Assuntos
Cicer , Fabaceae , Humanos , Fabaceae/genética , Mapeamento Cromossômico , Genoma de Planta , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Cicer/genética , Produtos Agrícolas/genética , Glycine max/genética , Cromossomos
12.
Mol Plant ; 15(12): 1841-1851, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36307977

RESUMO

Evidence of whole-genome duplications (WGDs) and subsequent karyotype changes has been detected in most major lineages of living organisms on Earth. To clarify the complex resulting multi-layered patterns of gene collinearity in genome analyses, there is a need for convenient and accurate toolkits. To meet this need, we developed WGDI (Whole-Genome Duplication Integrated analysis), a Python-based command-line tool that facilitates comprehensive analysis of recursive polyploidization events and cross-species genome alignments. WGDI supports three main workflows (polyploid inference, hierarchical inference of genomic homology, and ancestral chromosome karyotyping) that can improve the detection of WGD and characterization of WGD-related events based on high-quality chromosome-level genomes. Significantly, it can extract complete synteny blocks and facilitate reconstruction of detailed karyotype evolution. This toolkit is freely available at GitHub (https://github.com/SunPengChuan/wgdi). As an example of its application, WGDI convincingly clarified karyotype evolution in Aquilegia coerulea and Vitis vinifera following WGDs and rejected the hypothesis that Aquilegia contributed as a parental lineage to the allopolyploid origin of core dicots.


Assuntos
Duplicação Gênica , Genômica
13.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012264

RESUMO

Celery (Apium graveolens L.), a plant from Apiaceae, is one of the most important vegetables and is grown worldwide. Carotenoids can capture light energy and transfer it to chlorophyll, which plays a central role in photosynthesis. Here, by performing transcriptomics and genomics analysis, we identified and conducted a comprehensive analysis of chlorophyll and carotenoid-related genes in celery and six representative species. Significantly, different contents and gene expression patterns were found among three celery varieties. In total, 237 and 290 chlorophyll and carotenoid-related genes were identified in seven species. No notable gene expansion of chlorophyll biosynthesis was detected in examined species. However, the gene encoding ζ-carotene desaturase (ZDS) enzyme in carotenoid was expanded in celery. Comparative genomics and RNA-seq analyses revealed 16 and 5 key genes, respectively, regulating chlorophyll and carotenoid. An intriguing finding is that chlorophyll and carotenoid-related genes were coordinately regulated by transcriptional factors, which could be distinctively classified into positive- and negative-regulation groups. Six CONSTANS (CO)-like transcription factors co-regulated chlorophyll and carotenoid-related genes were identified in celery. In conclusion, this study provides new insights into the regulation of chlorophyll and carotenoid by transcription factors.


Assuntos
Apium , Apium/genética , Apium/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Genômica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Verduras/metabolismo
14.
Plant Commun ; 3(6): 100414, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35923114

RESUMO

A hallmark of adaptive evolution is innovation in gene function, which is associated with the development of distinct roles for genes during plant evolution; however, assessing functional innovation over long periods of time is not trivial. Tartary buckwheat (Fagopyrum tataricum) originated in the Himalayan region and has been exposed to intense UV-B radiation for a long time, making it an ideal species for studying novel UV-B response mechanisms in plants. Here, we developed a workflow to obtain a co-functional network of UV-B responses using data from more than 10,000 samples in more than 80 projects with multi-species and multi-omics data. Dissecting the entire network revealed that flavonoid biosynthesis was most significantly related to the UV-B response. Importantly, we found that the regulatory factor MYB4R1, which resides at the core of the network, has undergone neofunctionalization. In vitro and in vivo experiments demonstrated that MYB4R1 regulates flavonoid and anthocyanin accumulation in response to UV-B in buckwheat by binding to L-box motifs in the FtCHS, FtFLS, and FtUFGT promoters. We used deep learning to develop a visual discrimination model of buckwheat flavonoid content based on natural populations exposed to global UV-B radiation. Our study highlights the critical role of gene neofunctionalization in UV-B adaptation.


Assuntos
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Flavonoides/metabolismo , Plantas/metabolismo
15.
Funct Plant Biol ; 49(10): 874-886, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35781367

RESUMO

Pectin methylesterase (PME) plays a vital role in the growth and development of plants. Their genes can be classified into two types, with Type-1 having an extra domain, PMEI. PME genes in foxtail millet (Setaria italica L.) have not been identified, and their sequence features and evolution have not been explored. Here, we identified 41 foxtail millet PME genes. Decoding the pro-region, containing the PMEI domain, revealed its more active nature than the DNA encoding PME domain, easier to be lost to produce Type-2 PME genes. We inferred that the active nature of the pro-region could be related to its harbouring more repetitive DNA sequences. Further, we revealed that though whole-genome duplication and tandem duplication contributed to producing new copies of PME genes, phylogenetic analysis provided clear evidence of ever-shrinking gene family size in foxtail millet and the other grasses in the past 100 million years. Phylogenetic analysis also supports the existence of two gene groups, Group I and Group II, with genes in Group II being more conservative. Our research contributes to understanding how DNA sequence structure affects the functional innovation and evolution of PME genes.


Assuntos
Setaria (Planta) , Hidrolases de Éster Carboxílico/genética , Genômica , Filogenia , Setaria (Planta)/genética
16.
iScience ; 25(7): 104574, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789857

RESUMO

Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype-dominating most resin-productive trees. Further, the stem transcriptome revealed that wounding concurrently activates phytohormones signaling, cell wall fortification, and resin terpenoid biosynthesis pathways leading to the synthesis of boswellic acid-a key chemotaxonomic marker of Boswellia. The sequence datasets reported here will serve as a foundation to investigate the genetic determinants of frankincense and other resin-producing species in Burseraceae.

18.
Plant Physiol ; 190(1): 340-351, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35789395

RESUMO

The genomes of Gramineae plants have been preferentially sequenced owing to their economic value. These genomes are often quite complex, for example harboring many duplicated genes, and are the main source of genetic innovation and often the result of recurrent polyploidization. Deciphering these complex genome structures and linking duplicated genes to specific polyploidization events are important for understanding the biology and evolution of plants. However, efforts have been hampered by the complexity of analyzing these genomes. Here, we analyzed 29 well-assembled and up-to-date Gramineae genome sequences by hierarchically relating duplicated genes in collinear regions to specific polyploidization or speciation events. We separated duplicated genes produced by each event, established lists of paralogous and orthologous genes, and ultimately constructed an online database, GGDB (http://www.grassgenome.com/). Homologous gene lists from each plant and between plants can be displayed, searched, and downloaded from the database. Interactive comparison tools are deployed to demonstrate homology among user-selected plants and to draw genome-scale or local alignment figures and gene-based phylogenetic trees corrected by exploiting gene collinearity. Using these tools and figures, users can easily detect structural changes in genomes and explore the effects of paleo-polyploidy on crop genome structure and function. The GGDB will provide a useful platform for improving our understanding of genome changes and functional innovation in Gramineae plants.


Assuntos
Genoma de Planta , Poliploidia , Evolução Molecular , Duplicação Gênica , Genes Duplicados , Genoma de Planta/genética , Filogenia , Plantas/genética , Poaceae/genética
19.
NPJ Breast Cancer ; 8(1): 20, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177654

RESUMO

Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERß) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERß and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERß was expressed in approximately 18% of TNBCs, and expression of ERß was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERß formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERß-mediated suppression of TNBC. Our findings indicate that ERß+ tumors exhibit different characteristics compared to ERß- tumors and demonstrate that ERß functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...