Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401231, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860742

RESUMO

Redox mediators (RMs) are widely utilized in the electrolytes of Li-O2 batteries to catalyze the formation/decomposition of Li2O2, which significantly enhances the cycling performance and reduces the charge overpotential. However, RMs have a shuttle effect by migrating to the Li anode side and inducing Li metal degradation through a parasitic reaction. Herein, a metal-organic framework gel (MOF-gel) separator is proposed to restrain the shuttling of RMs. Compared to traditional MOF nanoparticles, MOF gels form uniform and dense films on the separators. When using Ru(acac)3 (ruthenium acetylacetonate) as an RM, the MOF-gel separator suppresses the shuttling of Ru(acac)3 toward the Li anode side and significantly enhances the performance of Li-O2 batteries. Specifically, Li-O2 batteries exhibit an ultralong cycling life (410 cycles) at a current density of 0.5 A g-1. Moreover, the batteries using the MOF-gel/celgard separator exhibit significantly improved cycling performance (increase by ≈1.6 times) at a high current density of 1.0 A g-1 and a decreased charge/discharge overpotential. This result is expected to guide future development of battery separators and the exploration of redox mediators.

2.
Angew Chem Int Ed Engl ; 63(18): e202401304, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38465477

RESUMO

The electrocatalytic performance of single-site catalysts (SSCs) is closely correlated with the electronic structure of metal atoms. Herein we construct a series of Pt SSCs on heteroatom-doped hierarchical carbon nanocages, which exhibit increasing hydrogen evolution reaction (HER) activities along S-doped, P-doped, undoped and N-doped supports. Theoretical simulation indicates a multi-H-atom adsorption process on Pt SSCs due to the low coordination, and a reasonable descriptor is figured out to evaluate the HER activities. Relative to C-coordinated Pt, N-coordinated Pt has higher reactivity due to the electron transfer of N-to-Pt, which enriches the density of states of Pt 5d orbital near the Fermi level and facilitates the capturing of protons, just the opposite to the situations for P- and S-coordinated ones. The stable N-coordinated Pt originates from the kinetic stability throughout the multi-H-atom adsorption process. This finding provides a significant guidance for rational design of advanced Pt SSCs on carbon-based supports.

3.
J Am Chem Soc ; 146(13): 9365-9374, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511947

RESUMO

Electrocatalytic CO2 reduction (CO2RR) to alcohols offers a promising strategy for converting waste CO2 into valuable fuels/chemicals but usually requires large overpotentials. Herein, we report a catalyst comprising unique oxygen-bridged Cu binuclear sites (CuOCu-N4) with a Cu···Cu distance of 3.0-3.1 Å and concomitant conventional Cu-N4 mononuclear sites on hierarchical nitrogen-doped carbon nanocages (hNCNCs). The catalyst exhibits a state-of-the-art low overpotential of 0.19 V (versus reversible hydrogen electrode) for ethanol and an outstanding ethanol Faradaic efficiency of 56.3% at an ultralow potential of -0.30 V, with high-stable Cu active-site structures during the CO2RR as confirmed by operando X-ray adsorption fine structure characterization. Theoretical simulations reveal that CuOCu-N4 binuclear sites greatly enhance the C-C coupling at low potentials, while Cu-N4 mononuclear sites and the hNCNC support increase the local CO concentration and ethanol production on CuOCu-N4. This study provides a convenient approach to advanced Cu binuclear site catalysts for CO2RR to ethanol with a deep understanding of the mechanism.

4.
Small ; 20(4): e2303560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726249

RESUMO

1D compound semiconductor nanomaterials possess unique physicochemical properties that strongly depend on their size, composition, and structures. ZnS has been widely investigated as one of the most important semiconductors, and the control of crystallographic orientation of 1D ZnS nanostructures is still challenging and crucial to exploring their anisotropic properties. Herein, a solution-processed strategy is developed to synthesize 1D wurtzite (w-)ZnS nanostructures with the specific <002> and <210> orientations by co-decomposing the copper dibutyldithiocarbamate {[(C4 H9 )2 NCS2 ]2 Cu, i.e., R2 Cu} and zinc dibutyldithiocarbamate (R2 Zn) precursors in the mixed solvents of oleylamine and 1-dodecanethoil. A solution-solid-solid (SSS)-Oriented growth mechanism is proposed, which includes oriented nucleation dominated and SSS growth dominated stages. The crystallographic orientation mainly depends on the interfacial energy and ligand effect. The 1D w-ZnS nanostructures with controlled crystallographic orientation display unique morphologies, i.e., <002>-oriented w-ZnS nanorod enclosed with {110} facets while <210>-oriented w-ZnS nanobelt enclosed with wide (002) and narrow (110) facets. The bandgap of 1D w-ZnS nanostructures can be tuned from 3.94 to 3.82 eV with the crystallographic growth direction varied from <002> to <210>, thus leading to the tunable band-edge emission from ≈338 to ≈345 nm.

5.
Small ; 20(16): e2305513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38032150

RESUMO

Precious-metal single-atom catalysts (SACs), featured by high metal utilization and unique coordination structure for catalysis, demonstrate distinctive performances in the fields of heterogeneous and electrochemical catalysis. Herein, gold SACs are constructed on hierarchical nitrogen-doped carbon nanocages (hNCNC) via a simple impregnation-drying process and first exploited for electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce syngas. The as-constructed Au SAC exhibits the high mass activity of 3319 A g-1 Au at -1.0 V (vs reversible hydrogen electrode, RHE), much superior to the Au nanoparticles supported on hNCNC. The ratio of H2/CO can be conveniently regulated in the range of 0.4-2.2 by changing the applied potential. Theoretical study indicates such a potential-dependent H2/CO ratio is attributed to the different responses of HER and CO2RR on Au single-atom sites coordinating with one N atom at the edges of micropores across the nanocage shells. The catalytic mechanism of the Au active sites is associated with the smooth switch between twofold and fourfold coordination during CO2RR, which much decreases the free energy changes of the rate-determining steps and promotes the reaction activity.

6.
ACS Nano ; 17(21): 22095-22105, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37916602

RESUMO

Renewable-driven electrochemical CO2 reduction reaction (CO2RR) to syngas is an encouraging alternative strategy to traditional fossil fuel-based syngas production, and the development of industrial-level electrocatalysts is vital. Herein, based on theoretical optimization of metal species, hierarchical CoxNi1-x-N-C dual single-atom catalyst (DSAC) with individual NiN4 (CO preferential) and CoN4 (H2 preferential) moieties was constructed by a two-step pyrolysis route. The Co0.5Ni0.5-N-C exhibits a stable CO Faradaic efficiency of 50 ± 5% and an industrial-level current density of 101-365 mA cm-2 in an ultrawide potential window of -0.5 to -1.1 V. The CO/H2 ratio of syngas can be conveniently tuned by regulating the Co/Ni ratio. The coupled effect of NiN4 and CoN4 moieties under a local high-pH microenvironment is responsible for the regulation of the CO/H2 selectivity and yield for the CoxNi1-x-N-C catalyst, which is not present in the mixed Co-N-C and Ni-N-C catalyst. This study provides a promising DSAC strategy for achieving industrial-level syngas production via CO2RR.

7.
Mater Horiz ; 10(12): 5898-5906, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870084

RESUMO

Taking the advantages of hierarchical nitrogen-doped carbon nanocages (hNCNCs) with nanocavities for encapsulation and multiscale micro-meso-macropores/high conductivity for mass/electron synergistic transportation, a conversion-type CuO anode material is confined inside hNCNCs for potassium storage. The so-obtained yolk-shelled CuO@hNCNC hybrids have tunable CuO contents in the range of 11.7-63.7 wt%. The unique architecture leads to the loss-free pulverization of the active components during charge/discharge, which increases the surface-controlled charge storage, shortens the K+ solid diffusion lengths with an enlarged K+ diffusion coefficient, and meanwhile enhances the rate capability and durability. Consequently, the optimized CuO@hNCNC delivers a high specific capacity of 498 mA h g-1 at 0.1 A g-1 and 194 mA h g-1 at 10.0 A g-1 based on the total mass of CuO@hNCNC, and a long-term stability. The capacity based on the CuO active component reaches a record-high 522 mA h g-1 at 1.0 A g-1 after 2000 cycles, which is ca. 2.5 times the state-of-the-art value in the literature. The evolution of the cycling performance with CuO loading is well understood based on the loss-free pulverization. This study demonstrates a new strategy to turn the generally harmful pulverization of active components into a beneficial factor for K+ storage, which paves the way for exploring high-performance anodes for rechargeable batteries.

8.
Adv Mater ; 35(46): e2304551, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37589229

RESUMO

Lithium-selenium batteries are characterized by high volumetric capacity comparable to Li-S batteries, while ≈1025 times higher electrical conductivity of Se than S is favorable for high-rate capability. However, they also suffer from the "shuttling effect" of lithium polyselenides (LPSes) and Li dendrite growth. Herein, a multifunctional Janus separator is designed by coating hierarchical nitrogen-doped carbon nanocages (hNCNC) and AlN nanowires on two sides of commercial polypropylene (PP) separator to overcome these hindrances. At room temperature, the Li-Se batteries with the Janus separator exhibit an unprecedented high-rate capability (331 mAh g-1 at 25 C) and retain a high capacity of 408 mAh g-1 at 3 C after 500 cycles. Moreover, the high retained capacities are achieved over a wide temperature range from -30 °C to 60 °C, showing the potential application under extreme environments. The excellent performances result from the "1+1>2" synergism of suppressed LPSes shuttling by chemisorption and electrocatalysis of hNCNC on the cathode side and suppressed Li-dendrite growth by thermally conductive AlN-network on the anode side, which can be well understood by the "Bucket Effect". This Janus separator provides a general strategy to develop high-performance lithium-chalcogen (Se, S, SeS2 ) batteries.

9.
Small ; 19(37): e2301577, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37140077

RESUMO

Electrochemical CO2 reduction reaction (CO2 RR) to value-added chemicals/fuels is an effective strategy to achieve the carbon neutral. Palladium is the only metal to selectively produce formate via CO2 RR at near-zero potentials. To reduce cost and improve activity, the high-dispersive Pd nanoparticles on hierarchical N-doped carbon nanocages (Pd/hNCNCs) are constructed by regulating pH in microwave-assisted ethylene glycol reduction. The optimal catalyst exhibits high formate Faradaic efficiency of >95% within -0.05-0.30 V and delivers an ultrahigh formate partial current density of 10.3 mA cm-2 at the low potential of -0.25 V. The high performance of Pd/hNCNCs is attributed to the small size of uniform Pd nanoparticles, the optimized intermediates adsorption/desorption on modified Pd by N-doped support, and the promoted mass/charge transfer kinetics arising from the hierarchical structure of hNCNCs. This study sheds light on the rational design of high-efficient electrocatalysts for advanced energy conversion.

10.
Adv Healthc Mater ; 12(26): e2300834, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37062751

RESUMO

Hierarchical carbon nanocages as emerging nanomaterials have a great potential for photothermal therapy due to their unique porous structure, high specific surface area, and excellent photothermal property. Herein, a hierarchical nitrogen-doped carbon nanocage (hNCNC) is introduced as a second near-infrared photothermal agent, and then functionalizes it with metal-organic hydrogel (MOG) to form a thermal-responsive switch for sensitized photothermal therapy. Upon 1064 nm light irradiation, the hNCNCs exhibit a remarkable photothermal conversion efficiency of 65.9% owing to a high near-infrared extinction coefficient. Meanwhile, due to the hierarchical structure, hNCNCs show 60.2% (wt./wt.) loading efficiency of quercetin, a heat shock protein (Hsp70) inhibitor. Through thermal-driven dry-gel transformation, the coating MOGs intelligently release the encapsulated quercetin for sensitizing cancer cells to heat. Based on the synergistic effect of hyperthermia elevation and thermal-driven drug release, the dual thermal utilization platform achieves effective photothermal tumor ablation in vivo under low concentration of hNCNCs and mild irradiation, which provides a new diagram of intelligent responsive photothermal agents for enhanced photothermal therapy.


Assuntos
Carbono , Hipertermia Induzida , Carbono/química , Fototerapia , Terapia Fototérmica , Linhagem Celular Tumoral , Hidrogéis/farmacologia , Hidrogéis/química , Quercetina/farmacologia , Metais , Doxorrubicina/farmacologia
11.
J Chem Phys ; 158(9): 094703, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889975

RESUMO

Layered double hydroxides (LDH) can be transformed from alkaline supercapacitor material into metal-cation storage cathode working in neutral electrolytes through electrochemical activation. However, the rate performance for storing large cations is restricted by the small interlayer distance of LDH. Herein, the interlayer distance of NiCo-LDH is expanded by replacing the interlayer nitrate ions with 1,4-benzenedicarboxylic anions (BDC), leading to the enhanced rate performance for storing large cations (Na+, Mg2+, and Zn2+), whereas almost the unchanged one for storing small-radius Li+ ions. The improved rate performance of the BDC-pillared LDH (LDH-BDC) stems from the reduced charge-transfer and Warburg resistances during charge/discharge due to the increased interlayer distance, as revealed by in situ electrochemical impedance spectra. The asymmetric zinc-ion supercapacitor assembled with LDH-BDC and activated carbon presents high energy density and cycling stability. This study demonstrates an effective strategy to improve the large cation storage performance of LDH electrodes by increasing the interlayer distance.

12.
J Phys Chem Lett ; 13(34): 8033-8037, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993781

RESUMO

One dimensional (1D) compound semiconductor nanostructures have unique anisotropic optical, electrical, and physical properties. Synthesis of large scale 1D nanostructures with pure crystallographic growth direction by a colloidal route and finding an easy method to prove it were significant for further exploring their unique anisotropic properties. Additionally, MnS is one of the most important optoelectronic and magnetic semiconductors. Herein, the large scale γ-MnS nanorods with completely pure ⟨002⟩ growth direction were first synthesized and convinced by solid evidence using the X-ray diffraction method. Compared with the standard diffraction pattern of γ-MnS powder, the ⟨002⟩ oriented long γ-MnS nanorods showed only the (100),(110), (200), and (210) peaks while other diffraction peaks disappeared. This study opened a door for the synthesis of the 1D colloidal nanostructures with pure crystallographic growth direction at large scale, benefiting the manufacture of a novel apparatus based on their anisotropic properties.

13.
Chem Commun (Camb) ; 58(65): 9124-9127, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35880765

RESUMO

The application of layered double hydroxides (LDHs) in supercapacitors is encouraged by their high capacitances but still limited by deficient cycling stability. The remarkable capacitance decay of LDHs during cycling mainly results from the narrowing of the interlayer distance due to the interlayer anion replacement. A polymer encapsulation strategy is developed to improve the cycling stability of LDHs by inhibiting the anion exchange, opening a new avenue to develop stable LDH-based supercapacitor materials.

14.
Adv Sci (Weinh) ; 9(18): e2200411, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460180

RESUMO

Lithium-metal anodes suffer from inadequate rate and cycling performances for practical application mainly due to the harmful dendrite growth, especially at high currents. Herein a facile construction of the porous and robust network with thermally conductive AlN nanowires onto the commercial polypropylene separator by convenient vacuum filtration is reported. The so-constructed AlN-network shield provides a uniform thermal distribution to realize homogeneous Li deposition, super electrolyte-philic channels to enhance Li-ion transport, and also a physical barrier to resist dendrite piercing as the last fence. Consequently, the symmetric Li|Li cell presents an ultralong lifetime over 8000 h (20 mA cm-2 , 3 mAh cm-2 ) and over 1000 h even at an unprecedented high rate (80 mA cm-2 , 80 mAh cm-2 ), which is far surpassing the corresponding performances reported to date. The corresponding Li|LiFePO4 cell delivers a high specific capacity of 84.3 mAh g-1 at 10 C. This study demonstrates an efficient approach with great application potential toward durable and high-power Li-metal batteries and even beyond.

15.
Small ; 18(43): e2107082, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35218132

RESUMO

3D hierarchical carbon nanocages (hCNC) are becoming new platforms for advanced energy storage and conversion due to their unique structural characteristics, especially the combination of multiscale pore structure with high conductivity of sp2 carbon frameworks, which can promote the mass/charge synergetic transfer in various electrochemical processes. Herein, the MgO@ZnO composite-template method is developed to construct hCNC and nitrogen-doped hCNC (hNCNC), which integrates the advantages of the in situ MgO template method and ZnO self-sacrificing template method. The hierarchical MgO template provides the scaffold for depositing carbon nanocages, while the self-sacrificing ZnO template helps create abundant micropores while promoting the graphitization degree, so that the microstructures of the products are effectively regulated. The optimized hCNC and hNCNC have an increased specific surface area and conductivity, which can further boost the mass/charge synergetic transfer. As the electrode materials of supercapacitors, the optimal hCNC(hNCNC) exhibits a high specific capacitance of 281(348) F g-1 in KOH and 276(297) F g-1 in EMIMBF4 electrolytes at 1 A g-1 . The ultrahigh energy and power densities are realized, accompanied by a high-rate capability and long cycling stability. The record-high energy densities of 141.8-71.4 Wh kg-1 are achieved in EMIMBF4 at power densities of 10.0-250.4 kW kg-1 .

16.
Adv Mater ; 32(52): e2004632, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33185899

RESUMO

High volumetric performance is a challenging issue for carbon-based electrical double-layer capacitors (EDLCs). Herein, collapsed N,S dual-doped carbon nanocages (cNS-CNC) are constructed by simple capillary compression, which eliminates the surplus meso- and macropores, leading to a much increased density only at the slight expense of specific surface area. The N,S dual-doping induces strong polarity of the carbon surface, and thus much improves the wettability and charge transfer. The synergism of the high density, large ion-accessible surface area, and fast charge transfer leads to state-of-the-art volumetric performance under the premise of high rate capability. At a current density of 50 A g-1 , the optimized cNS-CNC delivers a high volumetric capacitance of 243 and 199 F cm-3 in KOH and EMIMBF4 electrolyte, with high energy density of 7.9 and 93.4 Wh L-1 , respectively. A top-level stack volumetric energy density of 75.3 Wh L-1 (at power density of 0.7 kW L-1 ) and a maximal stack volumetric power density of 112 kW L-1 (at energy density of 18.8 Wh L-1 ) are achieved in EMIMBF4 , comparable to the lead-acid battery in energy density but better in power density with 2-3 orders. This study demonstrates an efficient strategy to design carbon-based materials for high-volumetric-performance EDLCs with wide practical applications.

17.
J Phys Chem Lett ; 11(8): 2896-2901, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32212664

RESUMO

Transition-metal-nitrogen/carbon (TM-N/C) materials are promising alternatives to Pt-based oxygen reduction reaction (ORR) electrocatalysts of fuel cells. Identifying the highly active sites is the prerequisite for the design of high-performance electrocatalysts, in which the density functional theory (DFT) calculation is an important tool. However, the DFT simulation was usually conducted with a charge-neutral model, which is far away from the working condition, that is, under certain potentials. Herein, by using the DFT method with the explicit consideration of electrode potential, we systematically compared the activities of the Fe-N/C moieties previously proposed in the literature and identified the best one. This study not only demonstrates the significance of the electrode potential in computational electrochemistry but also suggests a feasible experimental strategy to increase the ORR performance of Fe-N/C electrocatalysts by creating edges defects and coordinating with the axial ligands on the Fe center, which is of practical significance for exploring the advanced non-precious-metal-based ORR electrocatalysts and related devices.

18.
Adv Mater ; 32(27): e1904177, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31566282

RESUMO

Energy storage and conversion play a crucial role in modern energy systems, and the exploration of advanced electrode materials is vital but challenging. Carbon-based nanocages consisting of sp2 carbon shells feature a hollow interior cavity with sub-nanometer microchannels across the shells, high specific surface area with a defective outer surface, and tunable electronic structure, much different from the intensively studied nanocarbons such as carbon nanotubes and graphene. These structural and morphological characteristics make carbon-based nanocages a new platform for advanced energy storage and conversion. Up-to-date synthetic strategies of carbon-based nanocages, the utilization of their unique porous structure and morphology for the construction of composites with foreign active species, and their significant applications to the advanced energy storage and conversion are reviewed. Structure-performance correlations are discussed in depth to highlight the contribution of carbon-based nanocages. The research challenges and trends are also envisaged for deepening and extending the study and application of this multifunctional material.

19.
Chem Commun (Camb) ; 55(92): 13920-13923, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31682247

RESUMO

Bimetallic MOF precursors can produce a homogeneous distribution of mixed-metal oxides after calcination, and thus may provide high efficiency as electrocatalysts in the water splitting process. We designed a layered bimetallic-organophosphonate containing Ir, Co and P because the metal-oxides are well-known for their efficiency in the oxygen-evolution reaction (OER), especially when the phosphate acts as a proton carrier. We describe the structure of the MOF and characteristics of the calcined form, which has outstanding OER characteristics in 1.0 M KOH with an overpotential of 317.7 mV at 10 mA cm-2 and a low Tafel slope of 59.1 mV dec-1.

20.
Chem Sci ; 10(24): 6083-6090, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31360413

RESUMO

Fischer-Tropsch synthesis of lower olefins (FTO) is a classical yet modern topic of great significance in which the supported Fe-based nanoparticles are the most promising catalysts. The performance deterioration of catalysts is a big challenge due to the instability of the nanosized active phase of iron carbides. Herein, by in situ mass spectrometry, theoretical analysis, and atmospheric- and high-pressure experimental examinations, we revealed the Ostwald-ripening-like growth mechanism of the active phase of iron carbides in FTO, which involves the cyclic formation-decomposition of iron carbonyl intermediates to transport iron species from small particles to large ones. Accordingly, by suppressing the formation of iron carbonyl species with a high-N-content carbon support, the size and structure of the active phase were regulated and stabilized, and durable iron-based catalysts were conveniently obtained with the highest selectivity for lower olefins up to 54.1%. This study provides a practical strategy for exploring advanced FTO catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...