Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 138: 107225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38141356

RESUMO

This work was focused on the newly developed ultrasonic approach for non-invasive surgery - boiling histotripsy (BH) - recently proposed for mechanical ablation of tissues using pulsed high intensity focused ultrasound (HIFU). The BH lesion is known to depend in size and shape on exposure parameters and mechanical properties, structure and composition of tissue being treated. The aim of this work was to advance the concept of BH dose by investigating quantitative relationships between the parameters of the lesion, pulsing protocols, and targeted tissue properties. A HIFU focus of a 1.5 MHz 256-element array driven by power-enhanced Verasonics system was electronically steered along the grid within 12 × 4 × 12 mm volume to produce volumetric lesions in porcine liver (soft, with abundant collagenous structures) and bovine myocardium (stiff, homogenous cellular) ex vivo tissues with various pulsing protocols (1-10 ms pulses, 1-15 pulses per point). Quantification of the lesion size and completeness was performed through serial histological sectioning, and a computer vision approach using a combination of manual and automated detection of fully fractionated and residual tissue based on neural network ResNet-18 was developed. Histological sample fixation led to underestimation of BH ablation rate compared to the ultrasound-based estimations, and provided similar qualitative feedback as did gross inspection. This suggests that gross observation may be sufficient for qualitatively evaluating the BH treatment completeness. BH efficiency in liver tissue was shown to be insensitive to the changes in pulsing protocol within the tested parameter range, whereas in bovine myocardium the efficiency increased with either increasing pulse length or number of pulses per point or both. The results imply that one universal mechanical dose metric applicable to an arbitrary tissue type is unlikely to be established. The dose metric as a product of the BH pulse duration and the number of pulses per sonication point (BHD1) was shown to be more relevant for initial planning of fractionation of collagenous tissues. The dose metric as a number of pulses per point (BHD2) is more suitable for the treatment planning of softer targets primarily containing cellular tissue, allowing for significant acceleration of treatment using shorter pulses.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Animais , Bovinos , Suínos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Miocárdio , Fígado/diagnóstico por imagem , Fígado/cirurgia , Ultrassonografia , Sonicação
2.
Ultrasound Med Biol ; 49(12): 2451-2458, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37718123

RESUMO

OBJECTIVE: Bacterial loads can be effectively reduced using cavitation-mediated focused ultrasound, or histotripsy. In this study, gram-negative bacteria (Escherichia coli) in suspension were used as model bacteria to evaluate the effectiveness of two regimens of histotripsy treatments: cavitation histotripsy (CH) and boiling histotripsy (BH). METHODS: Ten-milliliter volumes of Escherichia coli were treated at different negative focal pressure amplitudes and over time periods up to 40 min. Cavitation activity was characterized with coaxial passive cavitation detection (PCD) and synchronized plane wave B-mode imaging. RESULTS: CH treatments exhibited a threshold behavior that was consistent with PCD metrics of cavitation. Above the threshold, bacterial inactivation followed a monotonically increasing log-linear relationship that indicated an exponential inactivation rate. BH exhibited no threshold, but instead followed a different monotonically increasing inactivation rate. Inactivation rates were larger for BH at or below the CH threshold, and larger for CH substantially above the threshold. CH studies performed at different pulse lengths at the same duty cycle had similar inactivation rates, suggesting that at any given pressure amplitude, the "on time" was the most important variable for inactivating E. coli. The maximum inactivation was produced by CH at the highest pressure amplitudes used, leading to a log reduction >4.2 for a 40 min treatment. CONCLUSION: The results of this study suggest that both CH and BH can be used to inactivate E. coli in suspension, with the optimal regimen depending on the attainable peak negative focal pressure at the target.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Litotripsia , Escherichia coli , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Litotripsia/métodos , Imagens de Fantasmas
3.
BMC Vet Res ; 19(1): 141, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660015

RESUMO

BACKGROUND: Upper urinary tract stones are increasingly prevalent in pet cats and are difficult to manage. Surgical procedures to address obstructing ureteroliths have short- and long-term complications, and medical therapies (e.g., fluid diuresis and smooth muscle relaxants) are infrequently effective. Burst wave lithotripsy is a non-invasive, ultrasound-guided, handheld focused ultrasound technology to disintegrate urinary stones, which is now undergoing human clinical trials in awake unanesthetized subjects. RESULTS: In this study, we designed and performed in vitro testing of a modified burst wave lithotripsy system to noninvasively fragment stones in cats. The design accounted for differences in anatomic scale, acoustic window, skin-to-stone depth, and stone size. Prototypes were fabricated and tested in a benchtop model using 35 natural calcium oxalate monohydrate stones from cats. In an initial experiment, burst wave lithotripsy was performed using peak ultrasound pressures of 7.3 (n = 10), 8.0 (n = 5), or 8.9 MPa (n = 10) for up to 30 min. Fourteen of 25 stones fragmented to < 1 mm within the 30 min. In a second experiment, burst wave lithotripsy was performed using a second transducer and peak ultrasound pressure of 8.0 MPa (n = 10) for up to 50 min. In the second experiment, 9 of 10 stones fragmented to < 1 mm within the 50 min. Across both experiments, an average of 73-97% of stone mass could be reduced to fragments < 1 mm. A third experiment found negligible injury with in vivo exposure of kidneys and ureters in a porcine animal model. CONCLUSIONS: These data support further evaluation of burst wave lithotripsy as a noninvasive intervention for obstructing ureteroliths in cats.


Assuntos
Doenças do Gato , Litotripsia , Doenças dos Suínos , Urolitíase , Gatos , Humanos , Animais , Suínos , Litotripsia/veterinária , Rim , Urolitíase/veterinária , Oxalato de Cálcio , Modelos Animais , Doenças do Gato/diagnóstico por imagem , Doenças do Gato/terapia
4.
Ultrasonics ; 132: 106993, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099937

RESUMO

Pulsed high intensity focused ultrasound (pHIFU) is a non-invasive method that allows to permeabilize pancreatic tumors through inertial cavitation and thereby increase the concentration of systemically administered drug. In this study the tolerability of weekly pHIFU-aided administrations of gemcitabine (gem) and their influence on tumor progression and immune microenvironment were investigated in genetically engineered KrasLSL.G12D/þ; p53R172H/þ; PdxCretg/þ (KPC) mouse model of spontaneously occurring pancreatic tumors. KPC mice were enrolled in the study when the tumor size reached 4-6 mm and treated once a week with either ultrasound-guided pHIFU (1.5 MHz transducer, 1 ms pulses, 1% duty cycle, peak negative pressure 16.5 MPa) followed by administration of gem (n = 9), gem only (n = 5) or no treatment (n = 8). Tumor progression was followed by ultrasound imaging until the study endpoint (tumor size reaching 1 cm), whereupon the excised tumors were analyzed by histology, immunohistochemistry (IHC) and gene expression profiling (Nanostring PanCancer Immune Profiling panel). The pHIFU + gem treatments were well tolerated; the pHIFU-treated region of the tumor turned hypoechoic immediately following treatment in all mice, and this effect persisted throughout the observation period (2-5 weeks) and corresponded to areas of cell death, according to histology and IHC. Enhanced labeling by Granzyme-B was observed within and adjacent to the pHIFU treated area, but not in the non-treated tumor tissue; no difference in CD8 + staining was observed between the treatment groups. Gene expression analysis showed that the pHIFU + gem combination treatment lead to significant downregulation of 162 genes related to immunosuppression, tumorigenesis, and chemoresistance vs gem only treatment.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias Pancreáticas , Camundongos , Animais , Gencitabina , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Modelos Animais de Doenças , Linhagem Celular Tumoral , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Foot (Edinb) ; 56: 101989, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36905794

RESUMO

BACKGROUND: Plantar ulceration is a serious complication of diabetes. However, the mechanism of injury initiating ulceration remains unclear. The unique structure of the plantar soft tissue includes superficial and deep layers of adipocytes contained in septal chambers, however, the size of these chambers has not been quantified in diabetic or non-diabetic tissue. Computer-aided methods can be leveraged to guide microstructural measurements and differences with disease status. METHODS: Adipose chambers in whole slide images of diabetic and non-diabetic plantar soft tissue were segmented with a pre-trained U-Net and area, perimeter, and minimum and maximum diameter of adipose chambers were measured. Whole slide images were classified as diabetic or non-diabetic using the Axial-DeepLab network, and the attention layer was overlaid on the input image for interpretation. RESULTS: Non-diabetic deep chambers were 90 %, 41 %, 34 %, and 39 % larger in area (26,954 ± 2428 µm2 vs 14,157 ± 1153 µm2), maximum (277 ± 13 µm vs 197 ± 8 µm) and minimum (140 ± 6 µm vs 104 ± 4 µm) diameter, and perimeter (405 ± 19 µm vs 291 ± 12 µm), respectively, than the superficial (p < 0.001). However, there was no significant difference in these parameters in diabetic specimens (area 18,695 ± 2576 µm2 vs 16627 ± 130 µm2, maximum diameter 221 ± 16 µm vs 210 ± 14 µm, minimum diameter 121 ± 8 µm vs 114 ± 7 µm, perimeter 341 ± 24 µm vs 320 ± 21 µm). Between diabetic and non-diabetic chambers, only the maximum diameter of the deep chambers differed (221 ± 16 µm vs 277 ± 13 µm). The attention network achieved 82 % accuracy on validation, but the attention resolution was too coarse to identify meaningful additional measurements. CONCLUSIONS: Adipose chamber size differences may provide a basis for plantar soft tissue mechanical changes with diabetes. Attention networks are promising tools for classification, but additional care is required when designing networks for identifying novel features. DATA AVAILABILITY: All images, analysis code, data, and/or other resources required to replicate this work are available from the corresponding author upon reasonable request.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos
6.
Ultrasound Med Biol ; 49(1): 62-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36207225

RESUMO

Boiling histotripsy (BH) is a focused ultrasound technology that uses millisecond-long pulses with shock fronts to induce mechanical tissue ablation. The pulsing scheme and mechanisms of BH differ from those of cavitation cloud histotripsy, which was previously developed for benign prostatic hyperplasia. The goal of the work described here was to evaluate the feasibility of using BH to ablate fresh ex vivo human prostate tissue as a proof of principle for developing BH for prostate applications. Fresh human prostate samples (N = 24) were obtained via rapid autopsy (<24 h after death, institutional review board exempt). Samples were analyzed using shear wave elastography to ensure that mechanical properties of autopsy tissue were clinically representative. Samples were exposed to BH using 10- or 1-ms pulses with 1% duty cycle under real-time B-mode and Doppler imaging. Volumetric lesions were created by sonicating 1-4 rectangular planes spaced 1 mm apart, containing a grid of foci spaced 1-2 mm apart. Tissue then was evaluated grossly and histologically, and the lesion content was analyzed using transmission electron microscopy and scanning electron microscopy. Observed shear wave elastography characterization of ex vivo prostate tissue (37.9 ± 22.2 kPa) was within the typical range observed clinically. During BH, hyperechoic regions were visualized at the focus on B-mode, and BH-induced bubbles were also detected using power Doppler. As treatment progressed, hypoechoic regions of tissue appeared, suggesting successful tissue fractionation. BH treatment was twofold faster using shorter pulses (1 ms vs. 10 ms). Histological analysis revealed lesions containing completely homogenized cell debris, consistent with histotripsy-induced mechanical ablation. It was therefore determined that BH is feasible in fresh ex vivo human prostate tissue producing desired mechanical ablation. The study supports further work aimed at translating BH technology as a clinical option for prostate ablation.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Masculino , Humanos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Próstata/diagnóstico por imagem , Próstata/cirurgia
7.
Artigo em Inglês | MEDLINE | ID: mdl-35981067

RESUMO

One of the challenges of transcutaneous high-intensity focused ultrasound (HIFU) therapies, especially ones relying heavily on shock formation, such as boiling histotripsy (BH), is the loss of focusing from aberration induced by the heterogeneities of the body wall. Here, a methodology to execute aberration correction in vivo is proposed. A custom BH system consisting of a 1.5-MHz phased array of 256 elements connected to a Verasonics V1 system is used in pulse/echo mode on a porcine model under general anesthesia. Estimation of the time shifts needed to correct for aberration in the liver and kidney is done by maximizing the value of the coherence factor on the acquired backscattered signals. As this process requires multiple pulse/echo sequences on a moving target to converge to a solution, tracking is also implemented to ensure that the same target is used between each iteration. The method was validated by comparing the acoustic power needed to generate a boiling bubble at one target with aberration correction and at another target within a 5-mm radius without aberration correction. Results show that the aberration correction effectively lowers the acoustic power required to reach boiling by up to 45%, confirming that it indeed restored formation of the nonlinear shock front at the focus.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Ablação por Ultrassom Focalizado de Alta Intensidade , Abdome , Animais , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Rim , Fígado/diagnóstico por imagem , Fígado/cirurgia , Suínos
8.
Ultrasound Med Biol ; 48(9): 1762-1777, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697582

RESUMO

Tissue-mimicking gels provide a cost-effective medium to optimize histotripsy treatment parameters with immediate feedback. Agarose and polyacrylamide gels are often used to evaluate treatment outcomes as they mimic the acoustic properties and stiffness of a variety of soft tissues, but they do not exhibit high toughness, a characteristic of fibrous connective tissue. To mimic pathologic fibrous tissue found in benign prostate hyperplasia (BPH) and other diseases that are potentially treatable with histotripsy, an optically transparent hydrogel with high toughness was developed that is a hybrid of polyacrylamide and alginate. The stiffness was established using shear wave elastography (SWE) and indentometry techniques and was found to be representative of human BPH ex vivo prostate tissue. Different phantom compositions and excised ex vivo BPH tissue samples were treated with a 700-kHz histotripsy transducer at different pulse repetition frequencies. Post-treatment, the hybrid gels and the tissue samples exhibited differential reduction in stiffness as measured by SWE. On B-mode ultrasound, partially treated areas were present as hyperechoic zones and fully liquified areas as hypoechoic zones. Phase contrast microscopy of the gel samples revealed liquefaction in regions consistent with the target lesion dimensions and correlated to findings identified in tissue samples via histology. The dose required to achieve liquefaction in the hybrid gel was similar to what has been observed in ex vivo tissue and greater than that of agarose of comparable or higher Young's modulus by a factor >10. These results indicate that the developed hydrogels closely mimic elasticities found in BPH prostate ex vivo tissue and have a similar response to histotripsy treatment, thus making them a useful cost-effective alternative for developing and evaluating different treatment protocols.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Hiperplasia Prostática , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Humanos , Hidrogéis , Masculino , Imagens de Fantasmas , Sefarose
9.
Cancers (Basel) ; 14(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35205746

RESUMO

Pancreatic ductal adenocarcinomas are characterized by a complex and robust tumor microenvironment (TME) consisting of fibrotic tissue, excessive levels of hyaluronan (HA), and immune cells. We utilized quantitative multi-parametric magnetic resonance imaging (mp-MRI) methods at 14 Tesla in a genetically engineered KPC (KrasLSL-G12D/+, Trp53LSL-R172H/+, Cre) mouse model to assess the complex TME in advanced stages of tumor development. The whole tumor, excluding cystic areas, was selected as the region of interest for data analysis and subsequent statistical analysis. Pearson correlation was used for statistical inference. There was a significant correlation between tumor volume and T2 (r = -0.66), magnetization transfer ratio (MTR) (r = 0.60), apparent diffusion coefficient (ADC) (r = 0.48), and Glycosaminoglycan-chemical exchange saturation transfer (GagCEST) (r = 0.51). A subset of mice was randomly selected for histological analysis. There were positive correlations between tumor volume and fibrosis (0.92), and HA (r = 0.76); GagCEST and HA (r = 0.81); and MTR and CD31 (r = 0.48). We found a negative correlation between ADC low-b (perfusion) and Ki67 (r = -0.82). Strong correlations between mp-MRI and histology results suggest that mp-MRI can be used as a non-invasive tool to monitor the tumor microenvironment.

10.
Int J Impot Res ; 34(5): 477-486, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34035467

RESUMO

Peyronie's disease affects penile mechanics, but published research lacks biomechanical characterization of affected tunica albuginea. This work aims to establish mechanical testing methodology and characterize pathological tissue mechanics of Peyronie's disease. Tunica albuginea was obtained from patients (n = 5) undergoing reconstructive surgery for Peyronie's disease, sectioned into test specimens (n = 12), stored frozen at -20 °C, and imaged with micro-computed tomography (µCT). A tensile testing protocol was developed based on similar soft tissues. Correlation of mechanical summary variables (force, displacement, stiffness, work, Young's modulus, ultimate tensile stress, strain at ultimate tensile stress, and toughness) and µCT features were assessed with linear regression. Specimens empirically grouped into hard or soft stress-strain behavior were compared using a Student's t-test. Surface strain and failure patterns were described qualitatively. Specimens displayed high inter- and intra-subject variability. Mineralization volume was not correlated with mechanical parameters. Empirically hard tissue had higher ultimate tensile stress. Failure mechanisms and strain patterns differed between mineralized and non-mineralized specimens. Size, shape, and quantity of mineralization may be more important in determining Peyronie's disease plaque behavior than presence of mineralization alone, and single summary variables like modulus may not fully describe mechanical behavior.


Assuntos
Induração Peniana , Fibrose , Humanos , Masculino , Induração Peniana/cirurgia , Pênis/patologia , Microtomografia por Raio-X
11.
J Biomech ; 129: 110797, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34688066

RESUMO

Diabetes is associated with lower limb co-morbidities, including ulceration and subsequent amputation. As a systemic disease, diabetes affects the microstructure of soft tissues, and material microstructural changes are known to affect the macroscale mechanics. However, the associations between diabetes-related disruptions to essential microstructural components and mechanical changes in plantar skin with diabetes has not been thoroughly characterized. Plantar skin specimens were collected from four diabetic and eight non-diabetic donors at six plantar locations (hallux; first, third, and fifth metatarsals; lateral midfoot; calcaneus) from matched pairs. Mechanical testing was performed on fresh frozen specimens from one foot, and histomorphological measurement and biochemical quantification were performed on specimens from the other foot. Mechanical (compressive and shear moduli and viscoelastic slopes) and biochemical/histological (total quantity of collagen and elastin; dermal and epidermal thickness) parameters were correlated using linear mixed effects regression. There were no significant differences by disease state. Skin thicknesses were positively correlated with initial compression modulus and all three shear moduli. The final compressive modulus was significantly lower at the third metatarsal than the fifth metatarsal, lateral midfoot, and calcaneus, while the final shear modulus was significantly higher at the calcaneus than at the hallux, first, and third metatarsals. Epidermal thickness was significantly higher at the calcaneus compared to all other locations. While differences were not significant by disease state, the strong differences by locations and significant but weak correlations between skin thickness and mechanics can inform future research to understand the mechanism of ulcer formation in the diabetic foot.


Assuntos
Diabetes Mellitus , Pé Diabético , Ossos do Metatarso , , Humanos , Pressão , Pele
12.
J Appl Clin Med Phys ; 22(9): 345-359, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34346559

RESUMO

BACKGROUND: High-intensity focused ultrasound (HIFU) has been in clinical use for a variety of solid tumors and cancers. Accurate and reliable calibration is in a great need for clinical applications. An extracorporeal clinical HIFU system applied for the investigational device exemption (IDE) to the Food and Drug Administration (FDA) so that evaluation of its characteristics, performance, and safety was required. METHODS: The acoustic pressure and power output was characterized by a fiber optic probe and a radiation force balance, respectively, with the electrical power up to 2000 W. An in situ acoustic energy was established as the clinical protocol at the electrical power up to 500 W. Temperature elevation inside the tissue sample was measured by a thermocouple array. Generated lesion volume at different in situ acoustic energies and pathological examination of the lesions was evaluated ex vivo. RESULTS: Acoustic pressure mapping showed the insignificant presence of side/grating lobes and pre- or post-focal peaks (≤-12 dB). Although distorted acoustic pressure waveform was found in the free field, the nonlinearity was reduced significantly after the beam propagating through tissue samples (i.e., the second harmonic of -11.8 dB at 500 W). Temperature elevation was <10°C at a distance of 10 mm away from a 20-mm target, which suggests the well-controlled HIFU energy deposition and no damage to the surrounding tissue. An acoustic energy in the range of 750-1250 J resulted in discrete lesions with an interval space of 5 mm between the treatment spots. Histology confirmed that the lesions represented a region of permanently damaged cells by heat fixation, without causing cell lysis by either cavitation or boiling. CONCLUSIONS: Our characterization and ex vivo evaluation protocol met the IDE requirement. The in-situ acoustic energy model will be used in clinical trials to deliver almost consistent energy to the various targets.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Acústica , Calibragem , Fenômenos Mecânicos , Estados Unidos
13.
Ultrasound Med Biol ; 47(11): 3211-3220, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34362584

RESUMO

Ultrasound and microbubbles are useful for both diagnostic imaging and targeted drug delivery, making them ideal conduits for theranostic interventions. Recent reports have indicated the preclinical success of microbubble cavitation for enhancement of chemotherapy in abdominal tumors; however, there have been limited studies and variable efficacy in clinical implementation of this technique. This is likely because in contrast to the high pressures and long cycle lengths seen in successful preclinical work, current clinical implementation of microbubble cavitation for drug delivery generally involves low acoustic pressures and short cycle lengths to fit within clinical guidelines. To translate the preclinical parameter space to clinical adoption, a relevant safety study in a healthy large animal is required. Therefore, the purpose of this work was to evaluate the safety of ultrasound cavitation treatment (USCTx) in a healthy porcine model using a modified Philips EPIQ with S5-1 as the focused source. We performed USCTx on eight healthy pigs and monitored health over the course of 1 wk. We then performed an acute study of USCTx to evaluate immediate tissue damage. Contrast-enhanced ultrasound exams were performed before and after each treatment to investigate perfusion changes within the treated areas, and blood and urine were evaluated for liver damage biomarkers. We illustrate, through quantitative analysis of contrast-enhanced ultrasound data, blood and urine analyses and histology, that this technique and the parameter space considered are safe within the time frame evaluated. With its safety confirmed using a clinical-grade ultrasound scanner and contrast agent, USCTx could be easily translated into clinical trials for improvement of chemotherapy delivery. This represents the first safety study assessing the bio-effects of microbubble cavitation from relevant ultrasound parameters in a large animal model.


Assuntos
Meios de Contraste , Microbolhas , Animais , Sistemas de Liberação de Medicamentos , Fígado/diagnóstico por imagem , Suínos , Ultrassonografia
14.
Ultrasound Med Biol ; 47(8): 2286-2295, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34078545

RESUMO

Burst wave lithotripsy (BWL) is a technology under clinical investigation for non-invasive fragmentation of urinary stones. Under certain ranges of ultrasound exposure parameters, this technology can cause cavitation in tissue leading to renal injury. This study sought to measure the focal pressure amplitude needed to cause cavitation in vivo and determine its consistency in native tissue, in an implanted stone model and under different exposure parameters. The kidneys of eight pigs were exposed to transcutaneous BWL ultrasound pulses. In each kidney, two locations were targeted: the renal sinus and the kidney parenchyma. Each was exposed for 5 min at a set pressure level and parameters, and cavitation was detected using an active cavitation imaging method based on power Doppler ultrasound. The threshold was determined by incrementing the pressure amplitude up or down after each 5-min interval until cavitation occurred/subsided. The pressure thresholds were remeasured postsurgery, targeting an implanted stone or collecting space (in sham). The presence of a stone or sham surgery did not significantly impact the threshold for tissue cavitation. Targeting parenchyma instead of kidney collecting space and lowering the ultrasound pulse repetition frequency both resulted in an increased pressure threshold for cavitation.


Assuntos
Cálculos Renais/terapia , Litotripsia/métodos , Animais , Feminino , Rim/lesões , Cálculos Renais/diagnóstico por imagem , Litotripsia/efeitos adversos , Pressão , Suínos , Ultrassonografia
15.
Comput Biol Med ; 134: 104491, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34090017

RESUMO

Histomorphological measurements can be used to identify microstructural changes related to disease pathomechanics, in particular, plantar soft tissue changes with diabetes. However, these measurements are time-consuming and susceptible to sampling and human measurement error. We investigated two approaches to automate segmentation of plantar soft tissue stained with modified Hart's stain for elastin with the eventual goal of subsequent morphological analysis. The first approach used multiple texture- and color-based features with tile-wise classification. The second approach used a convolutional neural network modified from the U-Net architecture with fewer channel dimensions and additional downsampling steps. A hybrid color and texture feature, Fourier reduced histogram of uniform improved opponent color local binary patterns (f-IOCLBP), yielded the best feature-based segmentation, but still performed 3.6% worse on average than the modified U-Net. The texture-based method was sensitive to changes in illumination and stain intensity, and segmentation errors were often in large regions of single tissues or at tissue boundaries. The U-Net was able to segment small, few-pixel tissue boundaries, and errors were often trivial to clean up with post-processing. A U-Net approach outperforms hand-crafted features for segmentation of plantar soft tissue stained with modified Hart's stain for elastin.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação
16.
Ultrasound Med Biol ; 47(7): 1920-1930, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33902954

RESUMO

Abscesses are walled-off collections of infected fluids that often develop as complications in the setting of surgery and trauma. Treatment is usually limited to percutaneous catheterization with a course of antibiotics. As an alternative to current treatment strategies, a histotripsy approach was developed and tested in a novel porcine animal model. The goal of this article is to use advanced ultrasound imaging modes to extract sonographic features associated with the progression of abscess development in a porcine model. Intramuscular or subcutaneous injections of a bi-microbial bacteria mixture plus dextran particles as an irritant led to identifiable abscesses over a 2 to 3 wk period. Selected abscesses were imaged at least weekly with B-mode, 3-D B-mode, shear-wave elastography and plane-wave Doppler imaging. Mature abscesses were characterized by a well-defined core of varying echogenicity surrounded by a hypoechoic capsule that was highly vascularized on Doppler imaging. 3-D imaging demonstrated the natural history of abscess morphology, with the abscess becoming less complex in shape and increasing in volume. Furthermore, shear-wave elastography demonstrated variations in stiffness as phlegmon becomes abscess and then liquefies, over time. These ultrasound features potentially provide biomarkers to aid in selection of treatment strategies for abscesses.


Assuntos
Abscesso/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Imagem por Elasticidade , Feminino , Imageamento Tridimensional , Suínos , Ultrassonografia , Ultrassonografia Doppler
17.
Ultrasound Med Biol ; 47(3): 603-619, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33250219

RESUMO

Infected abscesses are walled-off collections of pus and bacteria. They are a common sequela of complications in the setting of surgery, trauma, systemic infections and other disease states. Current treatment is typically limited to antibiotics with long-term catheter drainage, or surgical washout when inaccessible to percutaneous drainage or unresponsive to initial care efforts. Antibiotic resistance is also a growing concern. Although bacteria can develop drug resistance, they remain susceptible to thermal and mechanical damage. In particular, short pulses of focused ultrasound (i.e., histotripsy) generate mechanical damage through localized cavitation, representing a potential new paradigm for treating abscesses non-invasively, without the need for long-term catheterization and antibiotics. In this pilot study, boiling and cavitation histotripsy treatments were applied to subcutaneous and intramuscular abscesses developed in a novel porcine model. Ultrasound imaging was used to evaluate abscess maturity for treatment monitoring and assessment of post-treatment outcomes. Disinfection was quantified by counting bacteria colonies from samples aspirated before and after treatment. Histopathological evaluation of the abscesses was performed to identify changes resulting from histotripsy treatment and potential collateral damage. Cavitation histotripsy was more successful in reducing the bacterial load while having a smaller treatment volume compared with boiling histotripsy. The results of this pilot study suggest focused ultrasound may lead to a technology for in situ treatment of acoustically accessible abscesses.


Assuntos
Abscesso/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade , Ultrassonografia de Intervenção , Animais , Modelos Animais de Doenças , Feminino , Projetos Piloto , Suínos
18.
Biomed Opt Express ; 11(11): 6528-6535, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282506

RESUMO

The accuracy of current burn triage techniques has remained between 50-70%. Accordingly, there is a significant clinical need for the quantitative and accurate assessment of partial-thickness burn injuries. Porcine skin represents the closest animal model to human skin, and is often used in surgical skin grafting procedures. In this study, we used a standardized in vivo porcine burn model to obtain terahertz (THz) point-spectroscopy measurements from burns with various severities. We then extracted two reflection hyperspectral parameters, namely spectral area under the curve between approximately 0.1 and 0.9 THz (-10 dB bandwidth in each spectrum), and spectral slope, to characterize each burn. Using a linear combination of these two parameters, we accurately classified deep partial- and superficial partial-thickness burns (p = 0.0159), compared to vimentin immunohistochemistry as the gold standard for burn depth determination.

19.
Front Pharmacol ; 11: 584344, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101038

RESUMO

Despite advances in interventional procedures and chemotherapeutic drug development, hepatocellular carcinoma (HCC) is still the fourth leading cause of cancer-related deaths worldwide with a <30% 5-year survival rate. This poor prognosis can be attributed to the fact that HCC most commonly occurs in patients with pre-existing liver conditions, rendering many treatment options too aggressive. Patient survival rates could be improved by a more targeted approach. Ultrasound-induced cavitation can provide a means for overcoming traditional barriers defining drug uptake. The goal of this work was to evaluate preclinical efficacy of image-guided, cavitation-enabled drug delivery with a clinical ultrasound scanner. To this end, ultrasound conditions (unique from those used in imaging) were designed and implemented on a Philips EPIQ and S5-1 phased array probe to produced focused ultrasound for cavitation treatment. Sonovue® microbubbles which are clinically approved as an ultrasound contrast agent were used for both imaging and cavitation treatment. A genetically engineered mouse model was bred and used as a physiologically relevant preclinical analog to human HCC. It was observed that image-guided and targeted microbubble cavitation resulted in selective disruption of the tumor blood flow and enhanced doxorubicin uptake and penetration. Histology results indicate that no gross morphological damage occurred as a result of this process. The combination of these effects may be exploited to treat HCC and other challenging malignancies and could be implemented with currently available ultrasound scanners and reagents.

20.
JCSM Rapid Commun ; 3(2): 44-55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33073264

RESUMO

BACKGROUND: Cancer cachexia is a multifactorial wasting syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. We address these issues in a novel transgenic mouse model Kras, Trp53 and Pdx-1-Cre (KPC) of pancreatic ductal adenocarcinoma (PDA) using multi-parametric magnetic resonance (mp-MR) measures. METHODS: KPC mice (n = 10) were divided equally into two groups (n = 5/group) depending on the size of the tumor i.e. tumor size <250 mm3 and >250 mm3. Using mp-MR measures, we demonstrated the changes in the gastrocnemius muscle at the microstructural level. In addition, we evaluated skeletal muscle contractile function in KPC mice using an in vivo approach. RESULTS: Increase in tumor size resulted in decrease in gastrocnemius maximum cross sectional area, decrease in T2 relaxation time, increase in magnetization transfer ratio, decrease in mean diffusivity, and decrease in radial diffusivity of water across the muscle fibers. Finally, we detected significant decrease in absolute and specific force production of gastrocnemius muscle with increase in tumor size. CONCLUSIONS: Our findings indicate that increase in tumor size may cause alterations in structural and functional parameters of skeletal muscles and that MR parameters may be used as sensitive biomarkers to noninvasively detect structural changes in cachectic muscles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...