Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541740

RESUMO

Wine grape quality is influenced by the variety and growing environment, and the quality of the grapes has a significant impact on the quality of the wine. Tannins are a crucial indicator of wine grape quality, and, therefore, rapid and non-destructive methods for detecting tannin content are necessary. This study collected spectral data of Pinot Noir and Chardonnay using a geophysical spectrometer, with a focus on the 500-1800 nm spectrum. The spectra were preprocessed using Savitzky-Golay (SG), first-order differential (1D), standard normal transform (SNV), and their respective combinations. Characteristic bands were extracted through correlation analysis (PCC). Models such as partial least squares (PLS), support vector machine (SVM), random forest (RF), and one-dimensional neural network (1DCNN) were used to model tannin content. The study found that preprocessing the raw spectra improved the models' predictive capacity. The SVM-RF model was the most effective in predicting grape tannin content, with a test set R2 of 0.78, an RMSE of 0.31, and an RE of 10.71%. These results provide a theoretical basis for non-destructive testing of wine grape tannin content.

2.
J Adolesc ; 96(1): 70-80, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750345

RESUMO

INTRODUCTION: In the post-COVID-19 era, small-scale and long-term recurrences of the pandemic can exacerbate future economic uncertainty. Previous studies have found that stressful situations are strongly associated with a controlling type of parenting. The relationship between parental perceptions of future economic uncertainty (PFEU) and helicopter parenting is currently unclear. This study aimed to examine the dyadic relationship between PFEU and helicopter parenting among Chinese parents in the postpandemic era and its underlying mechanisms from a family system perspective. METHODS: Questionnaire data were collected from 395 pairs of parents (Mfather = 43.65 ± 5.30, Mmother = 40.71 ± 5.16, Madolescent = 13.17 ± 0.87, 45.3% male) in Jiangxi Province, China in October 2021. An actor-partner interdependence mediation model was established. RESULTS: The results indicated that fathers' and mothers' PFEU were positively associated with their own helicopter parenting. Additionally, paternal parenting stress mediated the relationship between fathers' and mothers' PFEU and paternal helicopter parenting, whereas mothers' parenting stress mediated the association between mothers' PFEU and paternal and maternal helicopter parenting. CONCLUSIONS: The current research provides important insights for improving Chinese family education practices in the postpandemic era.


Assuntos
COVID-19 , Poder Familiar , Feminino , Adolescente , Masculino , Humanos , COVID-19/epidemiologia , Pais , Pai , Mães
3.
Methods Protoc ; 6(6)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37987354

RESUMO

Alcohol-associated liver disease (ALD) is a major global health issue, contributing significantly to morbidity and mortality worldwide. Among the ALD subtypes, alcohol-associated hepatitis poses a severe and urgent medical challenge with high short-term mortality rates. Despite extensive research, the current therapeutic approaches for alcohol-associated hepatitis have limited efficacy, necessitating novel interventions. Recent studies have highlighted the crucial role of the gut microbiota in ALD pathogenesis, particularly Enterococcus faecalis (E. faecalis) and its cytolysin exotoxin. This study presents the development of a standardized real-time quantitative polymerase chain reaction (RT-qPCR) assay to detect and quantify cytolysin in fecal samples from patients with alcohol-associated hepatitis. The diagnostic assay allows for an association analysis between cytolysin-positive E. faecalis and disease severity as well as mortality. This assay was developed to standardize the identification of cytolysin-positive patients who can be selected for clinical trials.

4.
Gut Microbes ; 15(1): 2236750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475473

RESUMO

The gastrointestinal microbiome plays a significant role in modulating numerous host processes, including metabolism. Prior studies show that when mice receive fecal transplants from obese donors on high-fat diets (HFD) (even when recipient mice are fed normal diets after transplantation), they develop obese phenotypes, demonstrating the prominent role that gut microbiota play in determining lean and obese phenotypes. While much of the credit has been given to gut bacteria, the impact of gut viruses on these phenotypes is understudied. To address this shortcoming, we gavaged mice with viromes isolated from donors fed HFD or normal chow over a 4-week study. By characterizing the gut bacterial biota via 16S rRNA amplicon sequencing and measuring mouse weights over time, we demonstrate that transplanted viruses affect the gut bacterial community, as well as weight gain/loss. Notably, mice fed chow but gavaged with HFD-derived viromes gained more weight than their counterparts receiving chow-derived viromes. The converse was also true: mice fed HFD but gavaged with chow-derived viromes gained less weight than their counterparts receiving HFD-derived viromes. Results were replicated in two independent experiments and phenotypic changes were accompanied by significant and identifiable differences in the fecal bacterial biota. Due to methodological limitations, we were unable to identify the specific bacterial strains responsible for respective phenotypic changes. This study confirms that virome-mediated perturbations can alter the fecal microbiome in vivo and indicates that such perturbations are sufficient to drive lean and obese phenotypes in mice.


Assuntos
Microbioma Gastrointestinal , Microbiota , Vírus , Camundongos , Animais , Transplante de Microbiota Fecal , Viroma , RNA Ribossômico 16S/genética , Obesidade/microbiologia , Dieta Hiperlipídica/efeitos adversos , Bactérias/genética , Fenótipo , Camundongos Endogâmicos C57BL
5.
Alcohol Clin Exp Res (Hoboken) ; 47(5): 856-867, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871955

RESUMO

BACKGROUND AND PURPOSE: Gut bacteria metabolize tryptophan into indoles. Intestinal levels of the tryptophan metabolite indole-3-acetic acid are reduced in patients with alcohol-associated hepatitis. Supplementation of indole-3-acetic acid protects against ethanol-induced liver disease in mice. The aim of this study was to evaluate the effect of engineered bacteria producing indoles as Aryl-hydrocarbon receptor (Ahr) agonists. METHODS: C57BL/6 mice were subjected to chronic-plus-binge ethanol feeding and orally given PBS, control Escherichia coli Nissle 1917 (EcN) or engineered EcN-Ahr. The effects of EcN and EcN-Ahr were also examined in mice lacking Ahr in interleukin 22 (Il22)-producing cells. RESULTS: Through the deletion of endogenous genes trpR and tnaA, coupled with overexpression of a feedback-resistant tryptophan biosynthesis operon, EcN-Ahr were engineered to overproduce tryptophan. Additional engineering allowed conversion of this tryptophan to indoles including indole-3-acetic acid and indole-3-lactic acid. EcN-Ahr ameliorated ethanol-induced liver disease in C57BL/6 mice. EcN-Ahr upregulated intestinal gene expression of Cyp1a1, Nrf2, Il22, Reg3b, and Reg3g, and increased Il22-expressing type 3 innate lymphoid cells. In addition, EcN-Ahr reduced translocation of bacteria to the liver. The beneficial effect of EcN-Ahr was abrogated in mice lacking Ahr expression in Il22-producing immune cells. CONCLUSIONS: Our findings indicate that tryptophan metabolites locally produced by engineered gut bacteria mitigate liver disease via Ahr-mediated activation in intestinal immune cells.

6.
Cell Host Microbe ; 31(3): 389-404.e7, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893735

RESUMO

Alcohol-associated liver disease is accompanied by intestinal mycobiome dysbiosis, yet the impacts on liver disease are unclear. We demonstrate that Candida albicans-specific T helper 17 (Th17) cells are increased in circulation and present in the liver of patients with alcohol-associated liver disease. Chronic ethanol administration in mice causes migration of Candida albicans (C. albicans)-reactive Th17 cells from the intestine to the liver. The antifungal agent nystatin decreased C. albicans-specific Th17 cells in the liver and reduced ethanol-induced liver disease in mice. Transgenic mice expressing T cell receptors (TCRs) reactive to Candida antigens developed more severe ethanol-induced liver disease than transgene-negative littermates. Adoptively transferring Candida-specific TCR transgenic T cells or polyclonal C. albicans-primed T cells exacerbated ethanol-induced liver disease in wild-type mice. Interleukin-17 (IL-17) receptor A signaling in Kupffer cells was required for the effects of polyclonal C. albicans-primed T cells. Our findings indicate that ethanol increases C. albicans-specific Th17 cells, which contribute to alcohol-associated liver disease.


Assuntos
Candida albicans , Células Th17 , Camundongos , Animais , Candida , Camundongos Transgênicos , Etanol/toxicidade
7.
bioRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36778328

RESUMO

Background: The gastrointestinal microbiome plays a significant role in numerous host processes and has an especially large impact on modulating the host metabolism. Prior studies have shown that when mice receive fecal transplants from obese donors that were fed high-fat diets (HFD) (even when recipient mice are fed normal diets after transplantation), they develop obese phenotypes. These studies demonstrate the prominent role that the gut microbiota play in determining lean and obese phenotypes. While much of the credit has been given to gut bacteria, studies have not measured the impact of gut viruses on these phenotypes. To address this shortcoming, we gavaged mice with viromes isolated from donors fed HFD or normal chow. By characterizing the mice’s gut bacterial biota and weight-gain phenotypes over time, we demonstrate that viruses can shape the gut bacterial community and affect weight gain or loss. Results: We gavaged mice longitudinally over 4 weeks while measuring their body weights and collecting fecal samples for 16S rRNA amplicon sequencing. We evaluated mice that were fed normal chow or high-fat diets, and gavaged each group with either chow-derived fecal viromes, HFD-derived fecal viromes, or phosphate buffered saline controls. We found a significant effect of gavage type, where mice fed chow but gavaged with HFD-derived viromes gained significantly more weight than their counterparts receiving chow-derived viromes. The converse was also true: mice fed HFD but gavaged with chow-derived viromes gained significantly less weight than their counterparts receiving HFD-derived viromes. These results were replicated in two separate experiments and the phenotypic changes were accompanied by significant and identifiable differences in the fecal bacterial biota. Notably, there were differences in Lachnospirales and Clostridia in mice fed chow but gavaged with HFD-derived fecal viromes, and in Peptostreptococcales, Oscillospirales, and Lachnospirales in mice fed HFD but gavaged with chow-derived fecal viromes. Due to methodological limitations, we were unable to identify specific bacterial species or strains that were responsible for respective phenotypic changes. Conclusions: This study confirms that virome-mediated perturbations can alter the fecal microbiome in an in vivo model and indicates that such perturbations are sufficient to drive lean and obese phenotypes in mice.

8.
Hepatology ; 78(1): 295-306, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36811393

RESUMO

BACKGROUND AND AIMS: Patients with severe alcohol-associated hepatitis have high morbidity and mortality. Novel therapeutic approaches are urgently needed. The aims of our study were to confirm the predictive value of cytolysin-positive Enterococcus faecalis ( E. faecalis ) for mortality in patients with alcohol-associated hepatitis and to assess the protective effect of specific chicken immunoglobulin Y (IgY) antibodies against cytolysin in vitro and in a microbiota-humanized mouse model of ethanol-induced liver disease. APPROACH AND RESULTS: We investigated a multicenter cohort of 26 subjects with alcohol-associated hepatitis and confirmed our previous findings that the presence of fecal cytolysin-positive E. faecalis predicted 180-day mortality in those patients. After combining this smaller cohort with our previously published multicenter cohort, the presence of fecal cytolysin has a better diagnostic area under the curve, better other accuracy measures, and a higher odds ratio to predict death in patients with alcohol-associated hepatitis than other commonly used liver disease models. In a precision medicine approach, we generated IgY antibodies against cytolysin from hyperimmunized chickens. Neutralizing IgY antibodies against cytolysin reduced cytolysin-induced cell death in primary mouse hepatocytes. The oral administration of IgY antibodies against cytolysin decreased ethanol-induced liver disease in gnotobiotic mice colonized with stool from cytolysin-positive patients with alcohol-associated hepatitis. CONCLUSIONS: E. faecalis cytolysin is an important mortality predictor in alcohol-associated hepatitis patients, and its targeted neutralization through specific antibodies improves ethanol-induced liver disease in microbiota-humanized mice.


Assuntos
Etanol , Hepatite Alcoólica , Animais , Camundongos , Galinhas , Imunoglobulinas/uso terapêutico , Anticorpos , Citotoxinas , Hepatite Alcoólica/tratamento farmacológico
9.
Dig Dis Sci ; 68(7): 3059-3069, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807831

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are two of the most common etiologies of chronic liver disease worldwide. Changes in intestinal permeability and increased gut microbial translocation have been posited as important contributors to inflammation in both ALD and NAFLD. However, gut microbial translocation has not been compared between the two etiologies and can lead to better understanding of the differences in their pathogenesis to liver disease. METHODS: We compared serum and liver markers in the following five models of liver disease to understand the differences in the role of gut microbial translocation on liver disease progression caused by ethanol versus Western diet: (1) 8-week chronic ethanol feeding model. (2) 2-week chronic-plus-binge (National Institute on Alcohol Abuse and Alcoholism (NIAAA)) ethanol feeding model. (3) 2-week chronic-plus-binge (NIAAA) ethanol feeding model in microbiota-humanized gnotobiotic mice colonized with stool from patients with alcohol-associated hepatitis. (4) 20-week Western-diet-feeding model of NASH. (5) 20-week Western-diet-feeding model in microbiota-humanized gnotobiotic mice colonized with stool from NASH patients. RESULTS: Translocation of bacterial lipopolysaccharide to the peripheral circulation was seen in both ethanol-induced and diet-induced liver disease, but translocation of bacteria itself was restricted to only ethanol-induced liver disease. Moreover, the diet-induced steatohepatitis models developed more significant liver injury, inflammation, and fibrosis compared with ethanol-induced liver disease models, and this positively correlated with the level of lipopolysaccharide translocation. CONCLUSIONS: More significant liver injury, inflammation, and fibrosis are seen in diet-induced steatohepatitis, which positively correlates with translocation of bacterial components, but not intact bacteria.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Etanol/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/patologia , Translocação Bacteriana , Lipopolissacarídeos , Fígado/patologia , Hepatopatias Alcoólicas/complicações , Hepatite Alcoólica/complicações , Inflamação/patologia , Dieta , Bactérias , Fibrose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
Gut ; 72(10): 1959-1970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36690432

RESUMO

OBJECTIVE: Alcohol-associated liver disease is accompanied by microbial dysbiosis, increased intestinal permeability and hepatic exposure to translocated microbial products that contribute to disease progression. A key strategy to generate immune protection against invading pathogens is the secretion of IgA in the gut. Intestinal IgA levels depend on the polymeric immunoglobulin receptor (pIgR), which transports IgA across the epithelial barrier into the intestinal lumen and hepatic canaliculi. Here, we aimed to address the function of pIgR during ethanol-induced liver disease. DESIGN: pIgR and IgA were assessed in livers from patients with alcohol-associated hepatitis and controls. Wild-type and pIgR-deficient (pIgR-/- ) littermates were subjected to the chronic-binge (NIAAA model) and Lieber-DeCarli feeding model for 8 weeks. Hepatic pIgR re-expression was established in pIgR-/- mice using adeno-associated virus serotype 8 (AAV8)-mediated pIgR expression in hepatocytes. RESULTS: Livers of patients with alcohol-associated hepatitis demonstrated an increased colocalisation of pIgR and IgA within canaliculi and apical poles of hepatocytes. pIgR-deficient mice developed increased liver injury, steatosis and inflammation after ethanol feeding compared with wild-type littermates. Furthermore, mice lacking pIgR demonstrated increased plasma lipopolysaccharide levels and more hepatic bacteria, indicating elevated bacterial translocation. Treatment with non-absorbable antibiotics prevented ethanol-induced liver disease in pIgR-/- mice. Injection of AAV8 expressing pIgR into pIgR-/- mice prior to ethanol feeding increased intestinal IgA levels and ameliorated ethanol-induced steatohepatitis compared with pIgR-/- mice injected with control-AAV8 by reducing bacterial translocation. CONCLUSION: Our results highlight that dysfunctional hepatic pIgR enhances alcohol-associated liver disease due to impaired antimicrobial defence by IgA in the gut.


Assuntos
Fígado Gorduroso , Hepatite , Hepatopatias Alcoólicas , Receptores de Imunoglobulina Polimérica , Camundongos , Animais , Etanol/metabolismo , Receptores de Imunoglobulina Polimérica/metabolismo , Translocação Bacteriana , Fígado/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Fígado Gorduroso/metabolismo , Hepatite/metabolismo , Imunoglobulina A , Camundongos Endogâmicos C57BL
11.
Hepatol Commun ; 7(2): e0029, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706195

RESUMO

Chronic alcohol consumption is associated with intestinal fungal dysbiosis, yet we understand little about how alterations of intestinal fungi (mycobiota) contribute to the pathogenesis of alcohol-associated liver disease. By reanalyzing internal transcribed spacer 2 amplicon sequencing of fecal samples from a cohort of 66 patients with alcohol use disorder for presence (as opposed to relative abundance) of fungal species, we observed that the presence of Malassezia restricta was associated with increased markers of liver injury. M. restricta exacerbates ethanol-induced liver injury both in acute binge and chronic ethanol-feeding models in mice. Using bone marrow chimeric mice, we found that the disease exacerbating effect by M. restricta was mediated by C-type lectin domain family 4, member N on bone marrow-derived cells. M. restricta induces inflammatory cytokines and chemokines in Kupffer cells through C-type lectin domain family 4, member N signaling. Targeting fungal pathobionts might be a therapeutic strategy for alcohol-associated liver disease.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Animais , Camundongos , Etanol/efeitos adversos , Hepatopatias Alcoólicas/microbiologia , Lectinas Tipo C/genética
12.
Nat Commun ; 13(1): 4630, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941112

RESUMO

Liver damage due to chronic alcohol use is among the most prevalent liver diseases. Alcohol consumption frequency is a strong factor of microbiota variance. Here we use isotope labeled [1-13C] ethanol, metagenomics, and metatranscriptomics in ethanol-feeding and intragastric mouse models to investigate the metabolic impacts of alcohol consumption on the gut microbiota. First, we show that although stable isotope labeled [1-13C] ethanol contributes to fatty acid pools in the liver, plasma, and cecum contents of mice, there is no evidence of ethanol metabolism by gut microbiota ex vivo under anaerobic conditions. Next, we observe through metatranscriptomics that the gut microbiota responds to ethanol-feeding by activating acetate dissimilation, not by metabolizing ethanol directly. We demonstrate that blood acetate concentrations are elevated during ethanol consumption. Finally, by increasing systemic acetate levels with glyceryl triacetate supplementation, we do not observe any impact on liver disease, but do induce similar gut microbiota alterations as chronic ethanol-feeding in mice. Our results show that ethanol is not directly metabolized by the gut microbiota, and changes in the gut microbiota linked to ethanol are a side effect of elevated acetate levels. De-trending for these acetate effects may be critical for understanding gut microbiota changes that cause alcohol-related liver disease.


Assuntos
Microbioma Gastrointestinal , Hepatopatias , Acetatos/farmacologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Etanol/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
J Hepatol ; 76(4): 788-799, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34896404

RESUMO

BACKGROUND & AIMS: Studies investigating the gut-liver axis have largely focused on bacteria, whereas little is known about commensal fungi. We characterized fecal fungi in patients with non-alcoholic fatty liver disease (NAFLD) and investigated their role in a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis. METHODS: We performed fungal internal transcribed spacer 2 sequencing using fecal samples from 78 patients with NAFLD, 16 controls and 73 patients with alcohol use disorder. Anti-Candida albicans (C. albicans) IgG was measured in blood samples from 17 controls and 79 patients with NAFLD. Songbird, a novel multinominal regression tool, was used to investigate mycobiome changes. Germ-free mice were colonized with feces from patients with non-alcoholic steatohepatitis (NASH), fed a Western diet for 20 weeks and treated with the antifungal amphotericin B. RESULTS: The presence of non-obese NASH or F2-F4 fibrosis was associated with a distinct fecal mycobiome signature. Changes were characterized by an increased log-ratio for Mucor sp./Saccharomyces cerevisiae (S. cerevisiae) in patients with NASH and F2-F4 fibrosis. The C. albicans/S. cerevisiae log-ratio was significantly higher in non-obese patients with NASH when compared with non-obese patients with NAFL or controls. We observed a different fecal mycobiome composition in patients with NAFLD and advanced fibrosis compared to those with alcohol use disorder and advanced fibrosis. Plasma anti-C. albicans IgG was increased in patients with NAFLD and advanced fibrosis. Gnotobiotic mice, colonized with human NASH feces and treated with amphotericin B were protected from Western diet-induced steatohepatitis. CONCLUSIONS: Non-obese patients with NAFLD and more advanced disease have a different fecal mycobiome composition to those with mild disease. Antifungal treatment ameliorates diet-induced steatohepatitis in mice. Intestinal fungi could be an attractive target to attenuate NASH. LAY SUMMARY: Non-alcoholic fatty liver disease is one of the most common chronic liver diseases and is associated with changes in the fecal bacterial microbiome. We show that patients with non-alcoholic fatty liver disease and more severe disease stages have a specific composition of fecal fungi and an increased systemic immune response to Candida albicans. In a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis, we show that treatment with antifungals reduces liver damage.


Assuntos
Microbioma Gastrointestinal , Micobioma , Hepatopatia Gordurosa não Alcoólica , Animais , Fezes/microbiologia , Humanos , Fígado , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Saccharomyces cerevisiae
14.
Nat Commun ; 12(1): 7172, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887405

RESUMO

Complement receptor of immunoglobulin superfamily (CRIg) is expressed on liver macrophages and directly binds complement component C3b or Gram-positive bacteria to mediate phagocytosis. CRIg plays important roles in several immune-mediated diseases, but it is not clear how its pathogen recognition and phagocytic functions maintain homeostasis and prevent disease. We previously associated cytolysin-positive Enterococcus faecalis with severity of alcohol-related liver disease. Here, we demonstrate that CRIg is reduced in liver tissues from patients with alcohol-related liver disease. CRIg-deficient mice developed more severe ethanol-induced liver disease than wild-type mice; disease severity was reduced with loss of toll-like receptor 2. CRIg-deficient mice were less efficient than wild-type mice at clearing Gram-positive bacteria such as Enterococcus faecalis that had translocated from gut to liver. Administration of the soluble extracellular domain CRIg-Ig protein protected mice from ethanol-induced steatohepatitis. Our findings indicate that ethanol impairs hepatic clearance of translocated pathobionts, via decreased hepatic CRIg, which facilitates progression of liver disease.


Assuntos
Enterococcus faecalis/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Hepatopatias Alcoólicas/imunologia , Macrófagos/imunologia , Receptores de Complemento 3b/imunologia , Receptores de Complemento/imunologia , Animais , Translocação Bacteriana , Complemento C3b/imunologia , Enterococcus faecalis/fisiologia , Etanol/efeitos adversos , Feminino , Trato Gastrointestinal/microbiologia , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/microbiologia , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Receptores de Complemento 3b/genética
15.
Front Physiol ; 12: 699253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349667

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) is an important cause of morbidity and mortality worldwide. The intestinal microbiota is involved in the development and progression of ALD; however, little is known about commensal fungi therein. METHODS: We studied the dynamic changes of the intestinal fungal microbiome, or mycobiome, in 66 patients with alcohol use disorder (AUD) and after 2 weeks of alcohol abstinence using internal transcribed spacer 2 (ITS2) amplicon sequencing of fecal samples. RESULTS: Patients with AUD had significantly increased abundance of the genera Candida, Debaryomyces, Pichia, Kluyveromyces, and Issatchenkia, and of the species Candida albicans and Candida zeylanoides compared with control subjects. Significantly improved liver health markers caspase-cleaved and intact cytokeratin 18 (CK18-M65) levels and controlled attenuation parameter (CAP) in AUD patients after 2 weeks of alcohol abstinence were associated with significantly lower abundance of the genera Candida, Malassezia, Pichia, Kluyveromyces, Issatchenkia, and the species C. albicans and C. zeylanoides. This was mirrored by significantly higher specific anti-C. albicans immunoglobulin G (IgG) and M (IgM) serum levels in AUD patients in relation to control participants, and significantly decreased anti-C. albicans IgG levels in AUD subjects after 2 weeks of abstinence. The intestinal abundance of the genus Malassezia was significantly higher in AUD subjects with progressive liver disease compared with non-progressive liver disease. CONCLUSION: In conclusion, improved liver health in AUD patients after alcohol abstinence was associated with lower intestinal abundances of Candida and Malassezia, and lower serum anti-C. albicans IgG levels. Intestinal fungi might serve as a therapeutic target to improve the outcome of patients in ALD.

16.
Sci Rep ; 11(1): 11980, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099789

RESUMO

Ultraviolet irradiation induces melanin accumulation, which can be reduced by the use of chemical whitening products. However, the associated safety concerns of such products have prompted the search for natural and harmless alternatives. This study aimed to identify a natural acidic formulation to reduce skin pigmentation. The metabolite propionic acid (CH3CH2COOH, PA) was the most abundant fatty acid in the filtrate from Pluronic F68 (PF68) fermentation of Cutibacterium acnes (C. acnes) and reduced the DOPA-positive melanocytes by significantly inhibiting cellular tyrosinase activity via binding to the free fatty acid receptor 2 (FFAR2). Moreover, 4 mM PA treatment did not alter melanocyte proliferation, indicating that it is an effective solution for hyperpigmentation, causing no cellular damage. The reduced DOPA-positive melanocytes and tyrosinase activity were also observed in mice ear skin tissue injected with a mixture of C. acnes and PF68, supporting that the inhibition of melanogenesis is likely to be mediated through fermentation metabolites from C. acnes fermentation using PF68 as a carbon source. Additionally, PA did not affect the growth of its parent bacteria C. acnes, hence is a potent fermentation metabolite that does not disrupt the balance of the skin microbiome.


Assuntos
Melaninas/síntese química , Propionatos/metabolismo , Propionibacterium acnes/metabolismo , Animais , Proliferação de Células , Orelha , Feminino , Fermentação , Humanos , Hiperpigmentação , Melanócitos/citologia , Melanócitos/metabolismo , Metaboloma , Camundongos Endogâmicos ICR , Processos Fotoquímicos , Propionatos/química , Receptores Acoplados a Proteínas G/efeitos da radiação , Pele , Pigmentação da Pele , Raios Ultravioleta
17.
Cell Mol Gastroenterol Hepatol ; 12(3): 891-920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34062281

RESUMO

BACKGROUND & AIMS: How benign liver steatosis progresses to nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC) remains elusive. NASH progression entails diverse pathogenic mechanisms and relies on complex cross-talk between multiple tissues such as the gut, adipose tissues, liver, and the brain. Using a hyperphagic mouse fed with a Western diet (WD), we aimed to elucidate the cross-talk and kinetics of hepatic and extrahepatic alterations during NASH-HCC progression, as well as regression. METHODS: Hyperphagic mice lacking a functional Alms1 gene (Foz/Foz) and wild-type littermates were fed WD or standard chow for 12 weeks for NASH/fibrosis and for 24 weeks for HCC development. NASH regression was modeled by switching back to normal chow after NASH development. RESULTS: Foz+WD mice were steatotic within 1 to 2 weeks, developed NASH by 4 weeks, and grade 3 fibrosis by 12 weeks, accompanied by chronic kidney injury. Foz+WD mice that continued on WD progressed to cirrhosis and HCC within 24 weeks and had reduced survival as a result of cardiac dysfunction. However, NASH mice that were switched to normal chow showed NASH regression, improved survival, and did not develop HCC. Transcriptomic and histologic analyses of Foz/Foz NASH liver showed strong concordance with human NASH. NASH was preceded by an early disruption of gut barrier, microbial dysbiosis, lipopolysaccharide leakage, and intestinal inflammation. This led to acute-phase liver inflammation in Foz+WD mice, characterized by neutrophil infiltration and increased levels of several chemokines/cytokines. The liver cytokine/chemokine profile evolved as NASH progressed, with subsequent predominance by monocyte recruitment. CONCLUSIONS: The Foz+WD model closely mimics the pathobiology and gene signature of human NASH with fibrosis and subsequent HCC. Foz+WD mice provide a robust and relevant preclinical model of NASH, NASH-associated HCC, chronic kidney injury, and heart failure.


Assuntos
Carcinoma Hepatocelular/etiologia , Dieta Ocidental/efeitos adversos , Suscetibilidade a Doenças , Hiperfagia/complicações , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Animais , Biomarcadores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/deficiência , Modelos Animais de Doenças , Dislipidemias/complicações , Dislipidemias/etiologia , Perfilação da Expressão Gênica , Imuno-Histoquímica , Resistência à Insulina , Cirrose Hepática/complicações , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/etiologia
18.
Transl Res ; 227: 1-14, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32553670

RESUMO

Alcohol-associated liver disease is accompanied by dysregulation of bile acid metabolism and gut barrier dysfunction. Peroxisome proliferator-activated receptor-delta (PPARδ) agonists are key metabolic regulators and have anti-inflammatory properties. Here, we evaluated the effect of the selective PPAR-delta agonist seladelpar (MBX-8025) on gut barrier function and bile acid metabolism in a mouse model of ethanol-induced liver disease. Wild type C57BL/6 mice were fed LieberDeCarli diet containing 0%-36% ethanol (caloric) for 8 weeks followed by a single binge of ethanol (5 g/kg). Pair fed mice received an isocaloric liquid diet as control. MBX-8025 (10 mg/kg/d) or vehicle were added to the liquid diet during the entire feeding period (prevention), or during the last 4 weeks of Lieber DeCarli diet feeding (intervention). In both prevention and intervention trials, MBX-8025 protected mice from ethanol-induced liver disease, characterized by lower serum alanine aminotransferase (ALT) levels, hepatic triglycerides, and inflammation. Chronic ethanol intake disrupted bile acid metabolism by increasing the total bile acid pool and serum bile acids. MBX-8025 reduced serum total and secondary bile acids, and the total bile acid pool as compared with vehicle treatment in both prevention and intervention trials. MBX-8025 restored ethanol-induced gut dysbiosis and gut barrier dysfunction. Data from this study demonstrates that seladelpar prevents and treats ethanol-induced liver damage in mice by direct PPARδ agonism in both the liver and the intestine.


Assuntos
Acetatos/farmacologia , Ácidos e Sais Biliares/metabolismo , Etanol/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase , Hepatopatias Alcoólicas/prevenção & controle , PPAR delta/agonistas , Acetatos/uso terapêutico , Animais , Feminino , Hepatopatias Alcoólicas/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Sci Rep ; 10(1): 21732, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303806

RESUMO

Poor wound closure due to diabetes, aging, stress, obesity, alcoholism, and chronic disease affects millions of people worldwide. Reasons wounds will not close are still unclear, and current therapies are limited. Although stem cell factor (SCF), a cytokine, is known to be important for wound repair, the cellular and molecular mechanisms of SCF in wound closure remain poorly understood. Here, we found that SCF expression in the epidermis is decreased in mouse models of delayed wound closure intended to mimic old age, obesity, and alcoholism. By using SCF conditionally knocked out mice, we demonstrated that keratinocytes' autocrine production of SCF activates a transient c-kit receptor in keratinocytes. Transient activation of the c-kit receptor induces the expression of growth factors and chemokines to promote wound re-epithelialization by increasing migration of skin cells (keratinocytes and fibroblasts) and immune cells (neutrophils) to the wound bed 24-48 h post-wounding. Our results demonstrate that keratinocyte-produced SCF is essential to wound closure due to the increased recruitment of a unique combination of skin cells and immune cells in the early phase after wounding. This discovery is imperative for developing clinical strategies that might improve the body's natural repair mechanisms for treating patients with wound-closure pathologies.


Assuntos
Queratinócitos/metabolismo , Síndrome Metabólica/fisiopatologia , Reepitelização/genética , Reepitelização/fisiologia , Fenômenos Fisiológicos da Pele , Pele/lesões , Fator de Células-Tronco/deficiência , Fator de Células-Tronco/fisiologia , Cicatrização/genética , Cicatrização/fisiologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Pele/citologia , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo
20.
World J Gastroenterol ; 26(33): 4933-4944, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32952340

RESUMO

BACKGROUND: End-stage liver disease caused by non-alcoholic steatohepatitis (NASH) is the second leading indication for liver transplantation. To date, only moderately effective pharmacotherapies exist to treat NASH. Understanding the pathogenesis of NASH is therefore crucial for the development of new therapies. The inflammatory cytokine tumor necrosis factor alpha (TNF-α) is important for the progression of liver disease. TNF signaling via TNF receptor 1 (TNFR1) has been hypothesized to be important for the development of NASH and hepatocellular carcinoma in whole-body knockout animal models. AIM: To investigate the role of TNFR1 signaling in hepatocytes for steatohepatitis development in a mouse model of diet-induced NASH. METHODS: NASH was induced by a western-style fast-food diet in mice deficient for TNFR1 in hepatocytes (TNFR1ΔHEP) and their wild-type littermates (TNFR1fl/fl). Glucose tolerance was assessed after 18 wk and insulin resistance after 19 wk of feeding. After 20 wk mice were assessed for features of NASH and the metabolic syndrome such as liver weight, liver steatosis, liver fibrosis and markers of liver inflammation. RESULTS: Obesity, liver injury, inflammation, steatosis and fibrosis was not different between TNFR1ΔHEP and TNFR1fl/fl mice. However, Tnfr1 deficiency in hepatocytes protected against glucose intolerance and insulin resistance. CONCLUSION: Our results indicate that deficiency of TNFR1 signaling in hepatocytes does not protect from diet-induced NASH. However, improved insulin resistance in this model strengthens the role of the liver in glucose homeostasis.


Assuntos
Resistência à Insulina , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA