Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Bio Protoc ; 14(9): e4982, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38737509

RESUMO

Apolipoprotein B (APOB) is the primary structural protein of atherogenic lipoproteins, which drive atherogenesis and thereby lead to deadly cardiovascular diseases (CVDs). Plasma levels of APOB-containing lipoproteins are tightly modulated by LDL receptor-mediated endocytic trafficking and cargo receptor-initiated exocytic route; the latter is much less well understood. This protocol aims to present an uncomplicated yet effective method for detecting APOB/lipoprotein secretion. We perform primary mouse hepatocyte isolation and culture coupled with well-established techniques such as immunoblotting for highly sensitive, specific, and semi-quantitative analysis of the lipoprotein secretion process. Its inherent simplicity facilitates ease of operation, rendering it a valuable tool widely utilized to explore the intricate landscape of cellular lipid metabolism and unravel the mechanistic complexities underlying lipoprotein-related diseases. Key features • A pipeline for the isolation and subsequent culture of mouse primary hepatocytes. • A procedure for tracking the secretion of APOB-containing lipoproteins. • A rapid and sensitive assay for detecting the APOB level based on immunoblotting.

2.
Environ Sci Technol ; 58(19): 8490-8500, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696308

RESUMO

Persistent organic pollutants (POPs) tend to accumulate in cold regions by cold condensation and global distillation. Soil organic matter is the main storage compartment for POPs in terrestrial ecosystems due to deposition and repeated air-surface exchange processes. Here, physicochemical properties and environmental factors were investigated for their role in influencing POPs accumulation in soils of the Tibetan Plateau and Antarctic and Arctic regions. The results showed that the soil burden of most POPs was closely coupled to stable mineral-associated organic carbon (MAOC). Combining the proportion of MAOC and physicochemical properties can explain much of the soil distribution characteristics of the POPs. The background levels of POPs were estimated in conjunction with the global soil database. It led to the proposition that the stable soil carbon pools are key controlling factors affecting the ultimate global distribution of POPs, so that the dynamic cycling of soil carbon acts to counteract the cold-trapping effects. In the future, soil carbon pool composition should be fully considered in a multimedia environmental model of POPs, and the risk of secondary release of POPs in soils under conditions such as climate change can be further assessed with soil organic carbon models.


Assuntos
Carbono , Poluentes do Solo , Solo , Solo/química , Poluentes Orgânicos Persistentes , Monitoramento Ambiental , Regiões Árticas , Ecossistema
3.
Water Res ; 258: 121769, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759284

RESUMO

Carbonyl compounds are important components of natural organic matter (NOM) with high reactivity, so that play a pivotal role in the dynamic transformation of NOM. However, due to the lack of effective analytical methods, our understanding on the molecular composition of these carbonyl compounds is still limited. Here, we developed a high-throughput screening method to detect carbonyl molecules in complex NOM samples by combining chemical derivatization with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). In six different types of dissolved organic matter (DOM) samples tested in this study, 20-30 % of detected molecules contained at least one carbonyl group, with relative abundance accounted for 45-70 %. These carbonyl molecules displayed lower unsaturation level, lower molecular weight, and higher oxidation degree compared to non-carbonyl molecules. More importantly, the measured abundances of carbonyl molecules were consistent with the results of 13C nuclear magnetic resonance (NMR) analysis. Based on this method, we found that carbonyl molecules can be produced at DOM-ferrihydrite interface, thus playing a role in shaping the molecular diversity of DOM. This method has broad application prospects in screening carbonyl compounds from complex mixtures, and the same strategy can be used to directional identification of molecules with other functional groups as well.

4.
Anal Chem ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761141

RESUMO

The detection of virus RNA in wastewater has been established as a valuable method for monitoring Coronavirus disease 2019. Carbon nanomaterials hold potential application in separating virus RNA owing to their effective adsorption and extraction capabilities. However, carbon nanomaterials have limited separability under homogeneous aqueous conditions. Due to the stabilities in their nanostructure, it is a challenge to efficiently immobilize them onto magnetic beads for separation. Here, we develop a porous agarose layered magnetic graphene oxide (GO) nanocomposite that is prepared by agglutinating ferroferric oxide (Fe3O4) beads and GO with agarose into a cohesive whole. With an average porous size of approximately 500 nm, the porous structure enables the unhindered entry of virus RNA, facilitating its interaction with the surface of GO. Upon the application of a magnetic field, the nucleic acid can be separated from the solution within a few minutes, achieving adsorption efficiency and recovery rate exceeding 90% under optimized conditions. The adsorbed nucleic acid can then be preserved against complex sample matrix for 3 days, and quantitatively released for subsequent quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection. The developed method was successfully utilized to analyze wastewater samples obtained from a wastewater treatment plant, detecting as few as 10 copies of RNA molecules per sample. The developed aMGO-RT-qPCR provides an efficient approach for monitoring viruses and will contribute to wastewater-based surveillance of community infections.

5.
Metabolites ; 14(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38668308

RESUMO

Flavonoids and alkaloids are the major active ingredients in mulberry leaves that have outstanding medicinal value. Bacillus subtilis can effectively activate the plants defense response and regulate the plant secondary metabolism. In this study, we explored the effects of soil application of B. subtilis on the content of flavonoids and the most important alkaloids (1-deoxynojirimycin, DNJ) in mulberry leaves. Significant decreases in flavonoid content were observed in tender leaves and mature leaves after treatment with B. subtilis; at the same time, significant increases in DNJ content were observed in tender leaves. Based on widely targeted LC-MS/MS and high-throughput approaches, we screened out 904 differentially synthesized metabolites (DSMs) and 9715 differentially expressed genes (DEGs). KEGG analyses showed that these DSMs and DEGs were both significantly enriched in the biosynthesis of secondary metabolites, flavonoid synthesis and plant hormone signal transduction. Further correlation analysis of DEMs and DEGs showed that 40 key genes were involved in flavonoid biosynthesis, with 6 key genes involved in DNJ biosynthesis. The expression of CHS, CHI, F3H, F3'H, FLS, UGT and AOC significantly responded to B. subtilis soil application. This study broadens our understanding of the molecular mechanisms underlying the accumulation of flavonoids and alkaloids in mulberry leaves.

6.
Environ Sci Technol ; 58(18): 7770-7781, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38665120

RESUMO

A computational framework based on placental gene networks was proposed in this work to improve the accuracy of the placental exposure risk assessment of environmental compounds. The framework quantitatively characterizes the ability of compounds to cross the placental barrier by systematically considering the interaction and pathway-level information on multiple placental transporters. As a result, probability scores were generated for 307 compounds crossing the placental barrier based on this framework. These scores were then used to categorize the compounds into different levels of transplacental transport range, creating a gradient partition. These probability scores not only facilitated a more intuitive understanding of a compound's ability to cross the placental barrier but also provided valuable information for predicting potential placental disruptors. Compounds with probability scores greater than 90% were considered to have significant transplacental transport potential, whereas those with probability scores less than 80% were classified as unlikely to cross the placental barrier. Furthermore, external validation set results showed that the probability score could accurately predict the compounds known to cross the placental barrier. In conclusion, the computational framework proposed in this study enhances the intuitive understanding of the ability of compounds to cross the placental barrier and opens up new avenues for assessing the placental exposure risk of compounds.


Assuntos
Poluentes Ambientais , Placenta , Gravidez , Feminino , Placenta/metabolismo , Humanos , Medição de Risco , Exposição Ambiental
7.
Burns Trauma ; 12: tkad045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444637

RESUMO

Background: Ionizing radiation (IR)-induced intestinal injury is a major side effect and dose-limiting toxicity in patients receiving radiotherapy. There is an urgent need to identify an effective and safe radioprotectant to reduce radiation-induced intestinal injury. Immunoregulation is considered an effective strategy against IR-induced injury. The purpose of this article was to investigate the protective effect of Nocardia rubra cell wall skeleton (Nr-CWS), an immunomodulator, on radiation-induced intestinal damage and to explore its potential mechanism. Methods: C57BL/6 J male mice exposed to 12 Gy whole abdominal irradiation (WAI) were examined for survival rate, morphology and function of the intestine and spleen, as well as the gut microbiota, to comprehensively evaluate the therapeutic effects of Nr-CWS on radiation-induced intestinal and splenetic injury. To further elucidate the underlying mechanisms of Nr-CWS-mediated intestinal protection, macrophages were depleted by clodronate liposomes to determine whether Nr-CWS-induced radioprotection is macrophage dependent, and the function of peritoneal macrophages stimulated by Nr-CWS was detected in vitro. Results: Our data showed that Nr-CWS promoted the recovery of intestinal barrier function, enhanced leucine-rich repeat-containing G protein-coupled receptor 5+ intestinal stem cell survival and the regeneration of intestinal epithelial cells, maintained intestinal flora homeostasis, protected spleen morphology and function, and improved the outcome of mice exposed to 12 Gy WAI. Mechanistic studies indicated that Nr-CWS recruited macrophages to reduce WAI-induced intestinal damage. Moreover, macrophage depletion by clodronate liposomes blocked Nr-CWS-induced radioprotection. In vitro, we found that Nr-CWS activated the nuclear factor kappa-B signaling pathway and promoted the phagocytosis and migration ability of peritoneal macrophages. Conclusions: Our study suggests the therapeutic effect of Nr-CWS on radiation-induced intestinal injury, and provides possible therapeutic strategy and potential preventive and therapeutic drugs to alleviate it.

8.
IEEE Trans Biomed Eng ; PP2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536678

RESUMO

OBJECTIVE: Peripheral vascular disease is a worldwide leading health concern. Real-time peripheral hemoperfusion monitoring during treatment is essential to plan treatment strategies to improve circulatory enhancement effects. METHODS: The present work establishes a Janus flexible perfusion (JFP) sensor system for dynamic peripheral hemoperfusion monitoring. We develop a Janus structure design with different Young's modulus to improve the mechanical properties for motion artifacts suppression. Besides, we propose a peripheral perfusion index (PPI) to assess the peripheral hemoperfusion based on an optical perfusion model that is experimentally verified using an in-vitro model. The effectiveness of the system is assessed in three experimental scenarios, including motion artifact-robust test, induced vascular occlusion in upper limb, and peripheral hemoperfusion monitoring with the treatment of intermittent pneumatic compression (IPC), with comparison with Laser Doppler flowmetry (LDF). RESULTS: The noise level of the traditional rigid sensor is five times that of the JFP sensor within the effective signal frequency domain when there is movement. The PPI can effectively discriminate between different peripheral hemoperfusion states and has a correlation coefficient of 0.92 with the LDF mean values. The kappa statistic between the JFP sensor and LDF is 0.78, indicating substantial agreement between them to estimate the peripheral hemoperfusion improvements during IPC treatment. CONCLUSION: The sensor system we proposed can monitor peripheral hemoperfusion variation in real-time and is insensitive to motion artifacts. SIGNIFICANCE: The proposed sensing system provides a functional module for real-time estimation of peripheral hemoperfusion during clinical interventions.

9.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38551163

RESUMO

Endothelial barrier disruption plays a key role in the pathophysiology of heat stroke (HS). Knockout of DNAJA1 (DNAJA1­KO) is thought to be protective against HS based on a genome­wide CRISPR­Cas9 screen experiment. The present study aimed to illustrate the function of DNAJA1­KO against HS in human umbilical vein endothelial cells. DNAJA1­KO cells were infected using a lentivirus to investigate the role of DNAJA1­KO in HS­induced endothelial barrier disruption. It was shown that DNAJA1­KO could ameliorate decreased cell viability and increased cell injury, according to the results of Cell Counting Kit­8 and lactate dehydrogenase assays. Moreover, HS­induced endothelial cell apoptosis was inhibited by DNAJA1­KO, as indicated by Annexin V­FITC/PI staining and cleaved­caspase­3 expression using flow cytometry and western blotting, respectively. Furthermore, the endothelial barrier function, as measured by transepithelial electrical resistance and FITC­Dextran, was sustained during HS. DNAJA1­KO was not found to have a significant effect on the expression and distribution of cell junction proteins under normal conditions without HS. However, DNAJA1­KO could effectively protect the HS­induced decrease in the expression and distribution of cell junction proteins, including zonula occludens­1, claudin­5, junctional adhesion molecule A and occludin. A total of 4,394 proteins were identified using proteomic analysis, of which 102 differentially expressed proteins (DEPs) were activated in HS­induced wild­type cells and inhibited by DNAJA1­KO. DEPs were investigated by enrichment analysis, which demonstrated significant enrichment in the 'calcium signaling pathway' and associations with vascular­barrier regulation. Furthermore, the 'myosin light­chain kinase (MLCK)­MLC signaling pathway' was proven to be activated by HS and inhibited by DNAJA1­KO, as expected. Moreover, DNAJA1­KO mice and a HS mouse model were established to demonstrate the protective effects on endothelial barrier in vivo. In conclusion, the results of the present study suggested that DNAJA1­KO alleviates HS­induced endothelial barrier disruption by improving thermal tolerance and suppressing the MLCK­MLC signaling pathway.


Assuntos
Proteínas de Choque Térmico HSP40 , Golpe de Calor , Animais , Humanos , Camundongos , Golpe de Calor/genética , Golpe de Calor/metabolismo , Proteínas de Choque Térmico HSP40/genética , Células Endoteliais da Veia Umbilical Humana , Camundongos Knockout , Proteômica , Transdução de Sinais
10.
ACS Nano ; 18(9): 7253-7266, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38380803

RESUMO

Pseudomonas aeruginosa (P. aeruginosa), a drug-resistant Gram-negative pathogen, is listed among the "critical" group of pathogens by the World Health Organization urgently needing efficacious antibiotics in the clinics. Nanomaterials especially silver nanoparticles (AgNPs) due to the broad-spectrum antimicrobial activity are tested in antimicrobial therapeutic applications. Pathogens rapidly develop resistance to AgNPs; however, the health threat from antibiotic-resistant pathogens remains challenging. Here we present a strategy to prevent bacterial resistance to silver nanomaterials through imparting chirality to silver nanoclusters (AgNCs). Nonchiral AgNCs with high efficacy against P. aeruginosa causes heritable resistance, as indicated by a 5.4-fold increase in the minimum inhibitory concentration (MIC) after 9 repeated passages. Whole-genome sequencing identifies a Rhs mutation related to the wall of Gram-negative bacteria that possibly causes morphology changes in resistance compared to susceptible P. aeruginosa. Nevertheless, AgNCs with laevorotary chirality (l-AgNCs) induce negligible resistance even after 40 repeated passages and maintain a superior antibacterial efficiency at the MIC. l-AgNCs also show high cytocompatibility; negligible cytotoxicity to mammalian cells including JB6, H460, HEK293, and RAW264.7 is observed even at 30-fold MIC. l-AgNCs thus are examined as an alternative to levofloxacin in vivo, healing wound infections of P. aeruginosa efficaciously. This work provides a potential opportunity to confront the rising threat of antimicrobial resistance by developing chiral nanoclusters.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Prata/farmacologia , Prata/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Células HEK293 , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Mamíferos
11.
Exp Cell Res ; 435(2): 113955, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301990

RESUMO

Perilipin 2 (Plin2) is known to be dysregulated in several human malignancies, which facilitates cancer progression. Recent studies have found that the abnormal expression of Plin2 is associated with poor prognosis of non-small cell lung cancer (NSCLC). However, the specific role of Plin2 and its underlying mechanism remain unclear. This study revealed that Plin2 expression was low in NSCLC tissues, and its relatively higher expression indicated larger tumor size and poorer prognosis. In vitro experiments proved that Plin2 promoted NSCLC cellular proliferation and inhibited autophagy by activating the AKT/mTOR pathway. Meanwhile, treatment with the AKT phosphorylation promoter or inhibitor neutralized the influence of Plin2 depletion or over-expression on proliferation and autophagy, respectively. In vivo study showed that Plin2 stimulated subcutaneous tumorigenesis of NSCLC cells in nude mice. Collectively, this study clarified the carcinogenic role of Plin2 and its molecular mechanism in NSCLC progression, which may facilitate a targeted therapy in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pulmonares/patologia , Perilipina-2/metabolismo , Transdução de Sinais , Camundongos Nus , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Autofagia/genética , Proliferação de Células
12.
J Hazard Mater ; 468: 133808, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387177

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that pose a threat to the biodiversity of the Beiluo River, a polluted watercourse on the Loess Plateau impacted by diverse human activities. However, the occurrence, spatial distribution, and substitution characteristics of PFASs in this region remain unclear. This study aimed to unravel PFAS distribution patterns and their impact on the aquatic ecosystems of the Beiluo River Basin. The total PFAS concentration in the area ranged from 16.64-35.70 ng/L, with predominantly perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), collectively contributing 94%. The Mantel test revealed threats to aquatic communities from both legacy long-chain (perfluorooctanoic acid and sodium perfluorooctane sulfonic acid) and emerging (6:2 fluorotelomer sulfonic acid, 2-Perfluorohexyl ethanoic acid, and hexafluoropropylene oxide dimer acid (Gen-X)) PFSAs. The canonical correspondence analysis ordination indicated that trace quantities of emerging PFASs, specifically 2-Perfluorohexyl ethanoic acid and hexafluoropropylene oxide dimer acid (Gen-X), significantly influenced geographical variations in aquatic communities. In conclusion, this study underscores the importance of comprehensively exploring the ecological implications and potential risks associated with PFASs in the Beiluo River Basin.


Assuntos
Ácidos Alcanossulfônicos , Polímeros de Fluorcarboneto , Fluorocarbonos , Heptanoatos , Propionatos , Poluentes Químicos da Água , Humanos , Rios , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Fluorocarbonos/análise , China , Ácidos Alcanossulfônicos/análise , Água/análise
13.
ACS Appl Mater Interfaces ; 16(10): 12302-12309, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38414269

RESUMO

Lung cancer ranks among the cancers with the highest global incidence rates and mortality. Swift and extensive screening is crucial for the early-stage diagnosis of lung cancer. Laser desorption/ionization mass spectrometry (LDI-MS) possesses clear advantages over traditional analytical methods for large-scale analysis due to its unique features, such as simple sample processing, rapid speed, and high-throughput performance. As n-type semiconductors, titanate-based perovskite materials can generate charge carriers under ultraviolet light irradiation, providing the capability for use as an LDI-MS substrate. In this study, we employ Rh-doped SrTiO3 (STO/Rh)-assisted LDI-MS combined with machine learning to establish a method for urine-based lung cancer screening. We directly analyzed urine metabolites from lung cancer patients (LCs), pneumonia patients (PNs), and healthy controls (HCs) without employing any pretreatment. Through the integration of machine learning, LCs are successfully distinguished from HCs and PNs, achieving impressive area under the curve (AUC) values of 0.940 for LCs vs HCs and 0.864 for LCs vs PNs. Furthermore, we identified 10 metabolites with significantly altered levels in LCs, leading to the discovery of related pathways through metabolic enrichment analysis. These results suggest the potential of this method for rapidly distinguishing LCs in clinical applications and promoting precision medicine.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Neoplasias Pulmonares/diagnóstico , Lasers , Aprendizado de Máquina
14.
Langenbecks Arch Surg ; 409(1): 53, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38316643

RESUMO

PURPOSE: Pringle maneuver (PM) is a double-edged sword in liver resection, which is beneficial in reducing blood loss but also causes ischemia-reperfusion injury which may stimulate the outgrowth of micrometastases. The impact of PM on tumor recurrence remains controversial. This study aimed to assess whether PM has effect on the prognosis of colorectal cancer liver metastases (CRLM) after hepatectomy. METHODS: PubMed and the Cochrane Library databases were searched. The PM is defined as the portal triad clamping for several minutes, followed by several minutes of reperfusion, repeated as needed. Prolonged PM was defined as continuous clamping ≥ 20 min or ≥ 3 cycles for maximally 15-min intermittent ischemia. RESULTS: Eleven studies encompassing 4054 patients were included in this meta-analysis. The pooled hazard ratio (HR) did not show significant differences between PM and non-PM groups for disease-free survival (DFS) (HR = 0.91, 95% confidence interval (CI) 0.76-1.11, P = 0.36) and overall survival (HR = 1.03, 95% CI 0.76-1.39, P = 0.87). Subgroup analysis revealed that prolonged PM has adverse impact on DFS (HR 1.75, 95% CI = 1.28-2.40, P = 0.0005). However, non-prolonged PM is a protective factor for DFS (HR 0.82, 95% CI = 0.73-0.92, P = 0.001). CONCLUSION: These findings suggested that prolonged PM may have an adverse impact on the DFS of patients with CRLM and non-prolonged PM is a protective factor for DFS. Further prospective multicenter studies are warranted.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Hepatectomia/efeitos adversos , Neoplasias Hepáticas/patologia , Prognóstico , Neoplasias Colorretais/patologia
15.
Heliyon ; 10(4): e25929, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404782

RESUMO

Photocatalysis technology based on solar-powered semiconductors is widely recognized as a promising approach for achieving eco-friendly, secure, and sustainable degradation of organic contaminants. Nevertheless, conventional photocatalysts exhibit drawbacks such as a wide bandgap, and rapid recombination of photoinduced electron/hole pairs, in addition to complicated separation and recovery procedures. In this research, we cultivated BiOBr in situ on the surface of copper foam to fabricate a functional photocatalyst (denoted as BiOBr/Cu foam), which was subsequently employed for the photodegradation of Methylene Blue. Based on photodegradation experiments, the 0.3 BiOBr/Cu foam demonstrates superior photocatalytic efficacy compared to other photocatalysts under solar light irradiation. Furthermore, its ease of separation from the solution enhances its potential for reuse. The analysis of charge transfer revealed that the copper foam functions as an effective electron scavenger within the BiOBr/Cu foam, thereby facilitating charge separation and the generation of photo-induced holes. This phenomenon contributes to a significantly enhanced production of hydroxyl radicals. This study provides a valuable perspective on the design and synthesis of photocatalysts with heightened practicality, employing a conductive substrate.

16.
Biomol Biomed ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38193803

RESUMO

The inflammatory response is a natural immune response that prevents microbial invasion and repairs damaged tissues. However, excessive inflammatory responses can lead to various inflammation-related diseases, posing a significant threat to human health. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a vital mediator in the activation of the inflammatory cascade. Targeting the hyperactivation of the NLRP3 inflammasome may offer potential strategies for the prevention or treatment of inflammation-related diseases. It has been established that the ubiquitination and deubiquitination modifications of the NLRP3 inflammasome can provide protective effects in inflammation-related diseases. These modifications modulate several pathological processes, including excessive inflammatory responses, pyroptosis, abnormal autophagy, proliferation disorders, and oxidative stress damage. Therefore, this review discusses the regulation of NLRP3 inflammasome activation by ubiquitination and deubiquitination modifications, explores the role of these modifications in inflammation-related diseases, and examines the potential underlying mechanisms.

17.
Ecotoxicol Environ Saf ; 270: 115924, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171103

RESUMO

As a typical organophosphorus flame retardant, tris(2-chloroethyl) phosphate (TCEP) is refractory in aqueous environment. The application of TAP is a promising method for removing pollutants. Herein, the removal of TCEP using TAP was rigorously investigated, and the effects of some key variables were optimized by the one-factor-at-a-time approach. To further evaluate the interactions among variables, the response surface methodology (RSM) based on central composite design was employed. Under optimized conditions (pH 5, [PS]0: [TCEP]0 = 500:1), the maximum removal efficiency (RE) of TCEP reached up to 90.6%. In real-world waters, the RE of TCEP spanned the range of 56%- 65% in river water, pond water, lake water and sanitary sewage. The low-concentration Cl- (0.1 mM) promoted TCEP degradation, but the contrary case occurred when the high-concentration Cl-, NO3-, CO32-, HCO3-, HPO42-, H2PO4-, NH4+ and humic acid were present owing to their prominently quenching effects on SO4•-. Both EPR and scavenger experiments revealed that the main radicals in the TAP system were SO4•- and •OH, in which SO4•- played the most crucial role in TCEP degradation. GC-MS/MS analysis disclosed that two degradation products appeared, sourcing from the replacement, oxidation, hydroxylation and water-molecule elimination reactions. The other two products were inferred from the comprehensive literature. As for acute toxicity to fish, daphnid and green algae, product A displayed the slightly higher toxicity, whereas other three products exhibited the declining toxicity as compared to their parent molecule. These findings offer a theoretical/practical reference for high-efficiency removal of TCEP and its ecotoxicological risk evaluation.


Assuntos
Retardadores de Chama , Fosfinas , Poluentes Químicos da Água , Retardadores de Chama/toxicidade , Espectrometria de Massas em Tandem , Compostos Organofosforados , Organofosfatos/toxicidade , Organofosfatos/química , Oxirredução , Água , Fosfatos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
18.
Anal Chim Acta ; 1289: 342182, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38245198

RESUMO

Fluorescence sensing technique has been used in environmental analysis due to its simplicity, low cost, and visualization. Although the fruit pulp-based biomass carbon quantum dots (CQDs) have excellent luminescent properties, aloe leaves possess the superiority of being easily accessible in all seasons compared to fruit pulp. Thus, we fabricated Aloe carazo leaf-based nitrogen doping-CQDs (N-CQDs) using a facile hydrothermal approach, which emitted bright blue fluorescence with a quantum yield of 21.4 %. By comparison, the glutathione-encapsulated copper nanoclusters (GSH-CuNCs) displayed strong red fluorescence. A blue/red dual emission based on the N-CQDs/CuNCs mixture was established for nitenpyram detection. At the 350-nm excitation, the N-CQD/CuNCs system produced dual-wavelength emitting peaks at 440 and 660 nm, respectively. Moreover, when nitenpyram was introduced into the system, the fluorescence intensities (FIs) of N-CQDs significantly decreased, whereas the FIs of GSH-CuNCs varied slightly; simultaneously, the solution color changed from bright blue to dark red. Both the spectral overlapping between nitenpyram's UV-Vis absorption and N-CQDs' excitation and almost unchanged fluorescence lifetimes indicated the occurrence of inner-filtering effect (IFE) in the dual-emitting fluoroprobe. In addition, the Stern-Volmer constant (Ksv = 6.92 × 103 M-1), temperature effect, as well as UV-Vis absorption of N-CQD/CuNCs before and after the addition of nitenpyram corroborated the static-quenching behavior. Consequently, the fluorescence-quenching of N-CQDs by nitenpyram was attributable to the joint IFE and static-quenching principles. A good linearity existed between the F660/F440 values and nitenpyram concentrations (0.5-200 µM) with a method detection limit of 0.15 µM. The dual-emitting fluoroprobe provided the satisfactory recoveries (95.0%-107.0 %) for nitenpyram detection in real-world waters, which were comparable with the results of traditional liquid chromatography coupled to tandem mass spectrometry method. Owing to its simple operations, low-cost, and adaptability for on-site outdoor monitoring, the newly developed dual-emitting fluoroprobe possesses great potential applications in routine monitoring of nitenpyram under field conditions.


Assuntos
Aloe , Neonicotinoides , Pontos Quânticos , Pontos Quânticos/química , Corantes Fluorescentes/química , Cobre/química , Carbono/química , Virtudes , Limite de Detecção
19.
Environ Sci Technol ; 58(5): 2260-2270, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252093

RESUMO

Multiple pieces of evidence have shown that prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) is closely related to adverse birth outcomes for infants. However, difficult access to human samples limits our understanding of PFASs transport and metabolism across the human placental barrier, as well as the accurate assessment of fetal PFASs exposure. Herein, we assess fetal exposure to 28 PFASs based on paired serum, placenta, and meconium samples. Overall, 21 PFASs were identified first to be exposed to the fetus prenatally and to be metabolized and excreted by the fetus. In meconium samples, 25 PFASs were detected, with perfluorooctane sulfonate and perfluorohexane sulfonic acid being the dominant congeners, suggesting the metabolism and excretion of PFASs through meconium. Perfluoroalkyl sulfonic acids might be more easily eliminated through the meconium than perfluorinated carboxylic acids. Importantly, based on molecular docking, MRP1, OATP2B1, ASCT1, and P-gp were identified as crucial transporters in the dynamic placental transfer of PFASs between the mother and the fetus. ATSC5p and PubchemFP679 were recognized as critical structural features that affect the metabolism and secretion of PFASs through meconium. With increasing carbon chain length, both the transplacental transfer efficiency and meconium excretion efficiency of PFASs showed a structure-dependent manner. This study reports, for the first time, that meconium, which is a noninvasive and stable biological matrix, can be strong evidence of prenatal PFASs exposure.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Recém-Nascido , Gravidez , Humanos , Feminino , Placenta , Mecônio/metabolismo , Simulação de Acoplamento Molecular , Ácidos Alcanossulfônicos/metabolismo , Ácidos Carboxílicos/metabolismo
20.
Small ; 20(15): e2307680, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38012528

RESUMO

Self-powered vibration sensor is highly desired for distributed and continuous monitoring requirements of Industry 4.0. Herein, a flexible fiber-shaped triboelectric nanogenerator (F-TENG) with a coaxial core-shell structure is proposed for the vibration monitoring. The F-TENG exhibits higher adaptability to the complex surfaces, which has an outstanding application prospect due to vital compensation for the existing rigid sensors. Initially, the contact characteristics between the dielectric layers, that related to the perceiving performance of the TENG, are theoretically analyzed. Such a TENG with 1D structure endows high sensitivity, allowing for accurately responding to a wide range of vibration frequencies (0.1 to 100 Hz). Even applying to the real diesel engine, the error in detecting the vibration frequencies is only 0.32% compared with the commercial vibration sensor, highlighting its potential in practical application. Further, assisted by deep learning, the recognition accuracy in monitoring nine operating conditions of the system achieves 97.87%. Overall, the newly designed F-TENG with the merits of high-adaptability, cost-efficiency, and self-powered, has offered a promising solution to fulfill an extensive range of vibration sensing applications in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...