Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37458343

RESUMO

Electron transfer (ET) is a fundamental process in chemistry and biochemistry, and electronic coupling is an important determinant of the rate of ET. However, the electronic coupling is sensitive to many nuclear degrees of freedom, particularly those involved in intermolecular movements, making its characterization challenging. As a result, dynamic disorder in electron transfer coupling has rarely been investigated, hindering our understanding of charge transport dynamics in complex chemical and biological systems. In this work, we employed molecular dynamic simulations and machine-learning models to study dynamic disorder in the coupling of hole transfer between neighboring ethylene and naphthalene dimer. Our results reveal that low-frequency modes dominate these dynamics, resulting primarily from intermolecular movements such as rotation and translation. Interestingly, we observed an increasing contribution of translational motion as temperature increased. Moreover, we found that coupling is sub-Ohmic in its spectral density character, with cut-off frequencies in the range of 102 cm-1. Machine-learning models allow direct study of dynamics of electronic coupling in charge transport with sufficient ensemble trajectories, providing further new insights into charge transporting dynamics.

2.
ACS Omega ; 7(23): 20059-20080, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722020

RESUMO

We extend our previous quantum chemistry calculations of interaction energies for 31 homodimers of small organic functional groups (the SOFG-31 data set) by including 239 heterodimers with monomers selected within the SOFG-31 data set, thus resulting in the SOFG-31+239 data set. The minimum-level theoretical scheme contains (1) the basis set superposition error corrected supermolecule (BSSE-SM) approach for intermolecular interactions; (2) the second-order Møller-Plesset perturbation theory (MP2) with the Dunning's aug-cc-pVXZ (X = D, T, Q) basis sets for the geometry optimization and correlation energy calculations; and (3) the single-point energy calculations with the coupled cluster with single, double, and perturbative triple excitations method at the complete basis set limit [CCSD(T)/CBS] using the well-tested extrapolation methods for the MP2 energy calibrations. In addition, we have performed a parallel series of energy decomposition calculations based on the symmetry adapted perturbation theory (SAPT) in order to gain chemical insights. That the above procedure cannot be further reduced has been proven to be very crucial for constructing reliable data sets of interaction energies. The calculated CCSD(T)/CBS interaction energy data can serve as a benchmark for testing or training less accurate but more efficient calculation methods, such as the electronic density functional theory. As an application, we employ a segmental SAPT model previously developed for the SOFG-31 data set to predict binding energies of large heterodimer complexes. These model energy "quanta" can be used in coarse-grained molecular dynamics simulations by avoiding large-scale calculations.

3.
Nat Nanotechnol ; 16(1): 47-51, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169011

RESUMO

Light-matter interactions that induce charge and energy transfer across interfaces form the foundation for photocatalysis1,2, energy harvesting3 and photodetection4, among other technologies. One of the most common mechanisms associated with these processes relies on carrier injection. However, the exact role of the energy transport associated with this hot-electron injection remains unclear. Plasmon-assisted photocatalytic efficiencies can improve when intermediate insulation layers are used to inhibit the charge transfer5,6 or when off-resonance excitations are employed7, which suggests that additional energy transport and thermal effects could play an explicit role even if the charge transfer is inhibited8. This provides an additional interfacial mechanism for the catalytic and plasmonic enhancement at interfaces that moves beyond the traditionally assumed physical charge injection9-12. In this work, we report on a series of ultrafast plasmonic measurements that provide a direct measure of electronic distributions, both spatially and temporally, after the optical excitation of a metal/semiconductor heterostructure. We explicitly demonstrate that in cases of strong non-equilibrium, a novel energy transduction mechanism arises at the metal/semiconductor interface. We find that hot electrons in the metal contact transfer their energy to pre-existing free electrons in the semiconductor, without an equivalent spatiotemporal transfer of charge. Further, we demonstrate that this ballistic thermal injection mechanism can be utilized as a unique means to modulate plasmonic interactions. These experimental results are well-supported by both rigorous multilayer optical modelling and first-principle ab initio calculations.

4.
J Chem Phys ; 153(15): 154301, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092384

RESUMO

We have performed a quantum chemistry study on the bonding patterns and interaction energies for 31 dimers of small organic functional groups (dubbed the SOFG-31 dataset), including the alkane-alkene-alkyne (6 + 4 + 4 = 14, AAA) groups, alcohol-aldehyde-ketone (4 + 4 + 3 = 11, AAK) groups, and carboxylic acid-amide (3 + 3 = 6, CAA) groups. The basis set superposition error corrected super-molecule approach using the second order Møller-Plesset perturbation theory (MP2) with the Dunning's aug-cc-pVXZ (X = D, T, Q) basis sets has been employed in the geometry optimization and energy calculations. To calibrate the MP2 calculated interaction energies for these dimeric complexes, we perform single-point calculations with the coupled cluster with single, double, and perturbative triple excitations method at the complete basis set limit [CCSD(T)/CBS] using the well-tested extrapolation methods. In order to gain more physical insights, we also perform a parallel series of energy decomposition calculations based on the symmetry adapted perturbation theory (SAPT). The collection of these CCSD(T)/CBS interaction energy values can serve as a minimum quantum chemistry dataset for testing or training less accurate but more efficient calculation methods. As an application, we further propose a segmental SAPT model based on chemically recognizable segments in a specific functional group. These model interactions can be used to construct coarse-grained force fields for larger molecular systems.

5.
J Phys Chem B ; 124(21): 4326-4337, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32364740

RESUMO

Motivated by the need to study nonequilibrium evolutions of many-electron systems at the atomistic ab initio level, as they occur in modern devices and applications, we developed a quantum dynamics approach bridging master equations and surface hopping (SH). The Lindblad master equation (LME) allows us to propagate efficiently ensembles of particles, while SH provides nonperturbative evaluation of transition rates that evolve in time and depend explicitly on nuclear geometry. We implemented the LME-SH technique within real-time time-dependent density functional theory using global flux SH, and we demonstrated its efficiency and utility by modeling metallic films, in which charge-phonon dynamics was studied experimentally and showed an unexpectedly strong dependence on adhesion layers. The LME-SH approach provides a general framework for modeling efficiently quantum dynamics in a broad range of complex many-electron condensed-matter and nanoscale systems.

6.
J Phys Chem Lett ; 11(4): 1419-1427, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32011143

RESUMO

Plasmonic excitations in noble metals have many fascinating properties and give rise to a broad range of applications. We demonstrate, using nonadiabatic molecular dynamics combined with time-domain density functional theory, that the chemical composition and stoichiometry of substrates can have a strong influence on charge dynamics. By changing oxygen content in TiO2, including stoichiometric, oxygen rich, and oxygen poor phases, and Ti metal, one can alter lifetimes of charge carriers in Au by a factor of 5 and control the ratio of electron-to-hole relaxation rates by a factor of 10. Remarkably, a thin TiOx substrate greatly alters charge carrier properties in much thicker Au films. Such large variations stem from the fact that the Ti and O atoms are much lighter than Au, and their vibrations are much faster at dissipating the energy. The control over a particular charge carrier and an energy range depends on the Au and TiOx level alignment, and the interfacial interaction strength. These factors are easily influenced by the TiOx stoichiometry. In particular, oxygen rich and poor TiO2 can be used to control holes and electrons, respectively, while metallic Ti affects both charge carriers. The detailed atomistic analysis of the interfacial and electron-vibrational interactions generates the fundamental understanding of the properties of plasmonic materials needed to design photovoltaic, photocatalytic, optoelectronic, sensing, nanomedical, and other devices.

7.
J Chem Phys ; 147(6): 064507, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810796

RESUMO

Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.

8.
J Chem Phys ; 141(13): 134308, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296807

RESUMO

We perform an ab initio computational study of molecular complexes with the general formula CF3X-B that involve one trifluorohalomethane CF3X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH3 and PH3), two n-pairs (H2O and H2S), two n-pairs with an unsaturated bond (H2CO and H2CS), and a single π-pair (C2H4) and two π-pairs (C2H2). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C-X bond lengths shorten, while the C-X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.

9.
J Phys Chem A ; 115(9): 1472-85, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21322541

RESUMO

We have calculated the structural and energetic properties of neutral and ionic (singly charged anionic and cationic) semiconductor binary silicon-germanium clusters Si(m)Ge(n) for s = m + n ≤ 12 using the density functional theory (DFT-B3LYP) and coupled cluster [CCSD(T)] methods with Pople's 6-311++G(3df, 3pd) basis set. Neutral and anionic clusters share similar ground state structures for s = 3-7, independent of the stoichiometry and atom locations, but start to deviate at s = 8. The relative energetic stability of the calculated ground state structures among possible isomers has been analyzed through a bond strength propensity model where the pair interactions of Si-Si, Si-Ge, and Ge-Ge are competing. Electron affinities, ionization potentials, energy gaps between the highest and lowest occupied molecular orbitals (HOMO-LUMO gaps), and cluster mixing energies were calculated and analyzed. Overall, for a fixed s, the vertical ionization potential increases as the number of silicon atoms m increases, while the vertical electron affinity shows a dip at m = 2. As s increases, the ionization potentials increase from s = 2 to s = 3 and then decrease slowly to s = 8. The mixing energies for neutral and ionic clusters are all negative, indicating that the binary clusters are more stable than pure elemental clusters. Except for s = 4 and 8, cationic clusters are more stable than anionic ones and, thus, are more likely to be observed in experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...