Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Part Fibre Toxicol ; 21(1): 9, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419076

RESUMO

BACKGROUND: Zinc oxide nanoparticles (ZnONPs) are common materials used in skin-related cosmetics and sunscreen products due to their whitening and strong UV light absorption properties. Although the protective effects of ZnONPs against UV light in intact skin have been well demonstrated, the effects of using ZnONPs on damaged or sunburned skin are still unclear. In this study, we aimed to reveal the detailed underlying mechanisms related to keratinocytes and macrophages exposed to UVB and ZnONPs. RESULTS: We demonstrated that ZnONPs exacerbated mouse skin damage after UVB exposure, followed by increased transepidermal water loss (TEWL) levels, cell death and epithelial thickness. In addition, ZnONPs could penetrate through the damaged epithelium, gain access to the dermis cells, and lead to severe inflammation by activation of M1 macrophage. Mechanistic studies indicated that co-exposure of keratinocytes to UVB and ZnONPs lysosomal impairment and autophagy dysfunction, which increased cell exosome release. However, these exosomes could be taken up by macrophages, which accelerated M1 macrophage polarization. Furthermore, ZnONPs also induced a lasting inflammatory response in M1 macrophages and affected epithelial cell repair by regulating the autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. CONCLUSIONS: Our findings propose a new concept for ZnONP-induced skin toxicity mechanisms and the safety issue of ZnONPs application on vulnerable skin. The process involved an interplay of lysosomal impairment, autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. The current finding is valuable for evaluating the effects of ZnONPs for cosmetics applications.


Assuntos
Exossomos , Nanopartículas , Óxido de Zinco , Camundongos , Animais , Óxido de Zinco/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR , Raios Ultravioleta/efeitos adversos , Citocinas , Inflamassomos , Nanopartículas/toxicidade , Células Epiteliais
2.
Theranostics ; 13(1): 40-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593951

RESUMO

Immunotherapies are now emerging as an efficient anticancer therapeutic strategy. Cancer immunotherapy utilizes the host's immune system to fight against cancer cells and has gained increasing interest due to its durable efficacy and low toxicity compared to traditional antitumor treatments, such as chemotherapy and radiotherapy (RT). Although the combination of RT and immunotherapy has drawn extensive attention in the clinical setting, the overall response rates are still low. Therefore, strategies for further improvement are urgently needed. Nanotechnology has been used in cancer immunotherapy and RT to target not only cancer cells but also the tumor microenvironment (TME), thereby helping to generate a long-term immune response. Nanomaterials can be an effective delivery system and a strong autophagy inducer, with the ability to elevate autophagy to very high levels. Interestingly, autophagy could play a critical role in optimal immune function, mediating cell-extrinsic homeostatic effects through the regulation of danger signaling in neoplastic cells under immunogenic chemotherapy and/or RT. In this review, we summarize the preclinical and clinical development of the combination of immunotherapy and RT in cancer therapy and highlight the latest progress in nanotechnology for augmenting the anticancer effects of immunotherapy and RT. The underlying mechanisms of nanomaterial-triggered autophagy in tumor cells and the TME are discussed in depth. Finally, we suggest the implications of these three strategies combined together to achieve the goal of maximizing the therapeutic advantages of cancer therapy and show recent advances in biomarkers for tumor response in the evaluation of those therapies.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Imunoterapia , Autofagia , Microambiente Tumoral
3.
Clin Epidemiol ; 14: 1265-1279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345392

RESUMO

Purpose: Carbon monoxide (CO) poisoning may damage the pancreas, but the effects of CO poisoning on the development of diabetes and on existing diabetes remain unclear. We conducted a study incorporating data from epidemiologic analyses and animal experiments to clarify these issues. Methods: Using the National Health Insurance Database of Taiwan, we identified CO poisoning patients diagnosed between 2002 and 2016 (CO poisoning cohort) together with references without CO poisoning who were matched by age, sex, and index date at a 1:3 ratio. We followed participants until 2017 and compared the risks of diabetes and hyperglycemic crisis between two cohorts using Cox proportional hazards regressions. In addition, a rat model was used to assess glucose and insulin levels in blood as well as pathological changes in the pancreas and hypothalamus following CO poisoning. Results: Among participants without diabetes history, 29,141 in the CO poisoning cohort had a higher risk for developing diabetes than the 87,423 in the comparison cohort after adjusting for potential confounders (adjusted hazard ratio [AHR]=1.23; 95% confidence interval [CI]: 1.18-1.28). Among participants with diabetes history, 2302 in the CO poisoning cohort had a higher risk for developing hyperglycemic crisis than the 6906 in participants without CO poisoning (AHR = 2.12; 95% CI: 1.52-2.96). In the rat model, CO poisoning led to increased glucose and decreased insulin in blood and damages to pancreas and hypothalamus. Conclusion: Our epidemiological study revealed that CO poisoning increased the risks of diabetes and hyperglycemic crisis, which might be attributable to damages in the pancreas and hypothalamus as shown in the animal experiments.

4.
Am J Cancer Res ; 12(8): 3601-3624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119830

RESUMO

Radiotherapy is a localized treatment commonly used in various types of cancer. However, major limitation of radiotherapy is the development of resistance of tumor cells to radiosensitivity. Cordycepin, a predominant functional component of the Cordyceps sinensis, is considered to use in treating tumor cells. In the present study, we investigated the anticancer effect of the combination of radiation and cordycepin in the treatment of Leydig tumor cells. Results showed that the combination treatment has a synergistic effect significantly suppress cell viability and enhance the radiosensitivity in MA-10 mouse Leydig tumor cells. The combination treatment induced MA-10 cell apoptosis through increasing levels of cleaved caspase-3/-8/-9, poly ADP-ribose polymerase (PARP), and cytochrome c and decreasing levels of B-cell lymphoma 2 (Bcl-2). In addition, prolonged sub-G1 and G2/M arrest accompany with cell cycle-related protein regulation was observed in cells that received the combination treatment. The endoplasmic reticulum (ER) stress-related protein expressions were regulated after MA-10 cells treating with a combination of 100 µM cordycepin and 4 Gy radiation. Furthermore, the combination treatment also decreased the Leydig tumor mass by increasing cell apoptosis in tumor-bearing mice. In conclusion, cordycepin enhances radiosensitivity to induce mouse Leydig tumor cells toward apoptosis in vitro and in vivo. This study will provide a scientific basis for the development of therapeutic regimen of testicular cancer.

5.
Ecotoxicol Environ Saf ; 243: 113967, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985197

RESUMO

Nanotechnology allows for a greater quality of life, but may also cause environmental and organismic harm. Zinc oxide nanoparticles (ZnONPs) are one of the most commonly used metal oxide nanoparticles for commercial and industrial products. Due to its extensive use in various fields, there has already been much concern raised about the environmental health risks of ZnONPs. Many studies have investigated the toxicological profile of ZnONPs in zebrafish embryonic development; however, the specific characteristics of ZnONPs in zebrafish embryonic/larval developmental damage and their molecular toxic mechanisms of liver development are yet to be fully elucidated. This study aimed to reveal the hazard ranking of different surface modifications of ZnONPs on developing zebrafish and the toxicological mechanisms of these modified ZnONPs in liver tissue. The ~30 nm ZnONPs with amino- (NH2- ZnONPs) or carboxyl- (COOH-ZnONPs) modification were incorporated during the embryonic/larval stage of zebrafish. Severe toxicity was observed in both ZnONP groups, especially NH2-ZnONPs, which presented a higher toxicity in the low concentration groups. After prolonging the exposure time, the long-term toxicity assay showed a greater retardation in body length of zebrafish in the NH2-ZnONP group. Response data from multiple toxicity studies was integrated for the calculation of the EC50 values of bulk ZnO and ZnONPs, and the hazard levels were found to be decreasing in the order of NH2-, COOH-ZnONPs and bulk ZnO. Notably, NH2-ZnONPs induced ROS burden in the developing liver tissue, which activated autophagy-related gene and protein expression and finally induced liver cell apoptosis to reduce liver size. In conclusion, our findings are conducive to understanding the hazard risks of different surface modifications of ZnONPs in aquatic environments and will also be helpful for choosing the type of ZnONPs in future industrial applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais , Larva , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Qualidade de Vida , Peixe-Zebra , Óxido de Zinco/toxicidade
6.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897780

RESUMO

Recently, rapid advances in nanotechnology have provided a lot of opportunities for the mass production of engineered nanomaterials of various types of chemicals, including metals and nonmetals, promoting the development of a new generation of industrial and commercial products and the field of nanomedicine [...].


Assuntos
Nanoestruturas , Nanotecnologia , Nanomedicina , Nanoestruturas/toxicidade
7.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215043

RESUMO

The global application of engineered nanomaterials and nanoparticles (ENPs) in commercial products, industry, and medical fields has raised some concerns about their safety. These nanoparticles may gain access into rivers and marine environments through industrial or household wastewater discharge and thereby affect the ecosystem. In this study, we investigated the effects of silver nanoparticles (AgNPs) and zinc oxide nanoparticles (ZnONPs) on zebrafish embryos in aquatic environments. We aimed to characterize the AgNP and ZnONP aggregates in natural waters, such as lakes, reservoirs, and rivers, and to determine whether they are toxic to developing zebrafish embryos. Different toxic effects and mechanisms were investigated by measuring the survival rate, hatching rate, body length, reactive oxidative stress (ROS) level, apoptosis, and autophagy. Spiking AgNPs or ZnONPs into natural water samples led to significant acute toxicity to zebrafish embryos, whereas the level of acute toxicity was relatively low when compared to Milli-Q (MQ) water, indicating the interaction and transformation of AgNPs or ZnONPs with complex components in a water environment that led to reduced toxicity. ZnONPs, but not AgNPs, triggered a significant delay of embryo hatching. Zebrafish embryos exposed to filtered natural water spiked with AgNPs or ZnONPs exhibited increased ROS levels, apoptosis, and lysosomal activity, an indicator of autophagy. Since autophagy is considered as an early indicator of ENP interactions with cells and has been recognized as an important mechanism of ENP-induced toxicity, developing a transgenic zebrafish system to detect ENP-induced autophagy may be an ideal strategy for predicting possible ecotoxicity that can be applied in the future for the risk assessment of ENPs.

8.
Part Fibre Toxicol ; 19(1): 6, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031062

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) are considered a double-edged sword that demonstrates beneficial and harmful effects depending on their dimensions and surface coating types. However, mechanistic understanding of the size- and coating-dependent effects of AgNPs in vitro and in vivo remains elusive. We adopted an in silico decision tree-based knowledge-discovery-in-databases process to prioritize the factors affecting the toxic potential of AgNPs, which included exposure dose, cell type and AgNP type (i.e., size and surface coating), and exposure time. This approach also contributed to effective knowledge integration between cell-based phenomenological observations and in vitro/in vivo mechanistic explorations. RESULTS: The consolidated cell viability assessment results were used to create a tree model for generalizing cytotoxic behavior of the four AgNP types: SCS, LCS, SAS, and LAS. The model ranked the toxicity-related parameters in the following order of importance: exposure dose > cell type > particle size > exposure time ≥ surface coating. Mechanistically, larger AgNPs appeared to provoke greater levels of autophagy in vitro, which occurred during the earlier phase of both subcytotoxic and cytotoxic exposures. Furthermore, apoptosis rather than necrosis majorly accounted for compromised cell survival over the above dosage range. Intriguingly, exposure to non-cytotoxic doses of AgNPs induced G2/M cell cycle arrest and senescence instead. At the organismal level, SCS following a single intraperitoneal injection was found more toxic to BALB/c mice as compared to SAS. Both particles could be deposited in various target organs (e.g., spleen, liver, and kidneys). Morphological observation, along with serum biochemical and histological analyses, indicated that AgNPs could produce pancreatic toxicity, apart from leading to hepatic inflammation. CONCLUSIONS: Our integrated in vitro, in silico, and in vivo study revealed that AgNPs exerted toxicity in dose-, cell/organ type- and particle type-dependent manners. More importantly, a single injection of lethal-dose AgNPs (i.e., SCS and SAS) could incur severe damage to pancreas and raise blood glucose levels at the early phase of exposure.


Assuntos
Nanopartículas Metálicas , Prata , Animais , Sobrevivência Celular , Descoberta do Conhecimento , Nanopartículas Metálicas/toxicidade , Camundongos , Tamanho da Partícula , Prata/toxicidade
9.
Part Fibre Toxicol ; 19(1): 2, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34983566

RESUMO

BACKGROUND: Zinc oxide nanoparticles (ZnONPs) are widely used nanomaterial in personal cosmetics, such as skin creams and sunscreens, due to their whitening properties and strong UV light absorption. However, the safety issues and the hazards of ZnONPs, which can be taken up by the skin and cause skin toxicity, are still unclear. From a chemoprevention point of view, pterostilbene (PT) has been reported to prevent skin damage effectively by its anti-inflammatory and autophagy inducer effect. This study aims to determine the skin toxicity and the potential mechanisms of UVB and ZnONPs exposure and the preventive effect of PT. RESULTS: The co-exposure of UVB and ZnONPs elicit NLRP3 inflammasome activation and pyroptosis in keratinocytes. Furthermore, exposure to both UVB and ZnONPs also disrupts cellular autophagy, which increases cell exosome release. In vivo UVB and ZnONPs exposure triggers skin toxicity, as indicated by increased histological injury, skin thickness and transepidermal water loss. Notably, the NLRP3 inflammasome-mediated pyroptosis are also activated during exposure. Topical application of pterostilbene attenuates NLRP3 inflammasome activation and pyroptosis by decreasing ROS generation and mitochondrial ROS (mtROS) levels. In addition to its antioxidant effect, PT also reversed autophagy abnormalities by restoring normal autophagic flux and decreasing NLRP3 inflammasome-loaded exosome release. CONCLUSIONS: Our findings reveal that ZnONPs induce skin damage in conjunction with UVB exposure. This process involves an interplay of inflammasomes, pyroptosis, autophagy dysfunction, and exosomes in skin toxicity. PT alleviates skin inflammation by regulating the inflammasome-autophagy-exosome pathway, a finding which could prove valuable when further evaluating ZnONPs effects for cosmetic applications.


Assuntos
Nanopartículas , Óxido de Zinco , Autofagia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Óxido de Zinco/toxicidade
10.
J Hazard Mater ; 426: 127801, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863574

RESUMO

The bioaccumulation and depuration of TiO2 nanoparticles (TiO2NPs) by zebrafish via the dietary exposure following the OECD Test Guideline 305 (OECD TG305) was evaluated using particle size- and number concentration-resolved analysis based on single-particle ICP-MS (spICP-MS). We found that using enzymatic digestion without H2O2 or excessive heating can recover 84.0 ± 4.0% and 94.5 ± 3.5% of TiO2NP mass and number concentrations from fish tissue, respectively, without altering the size distribution of parent TiO2NPs. OECD TG305 can allow for the evaluation of bioaccumulation and depuration of TiO2NPs by fish based on the particle mass and number dose metrics. The toxicokinetic modeling can reasonably describe the mass- and number-based measurement data with the derived absorption efficiency α at ~0.2, depuration rate at ~0.5 d-1, and kinetic biomagnification factor (BMFk) at ~0.007 comparable with available data. The mass concentration- and number concentration-based bioaccumulation metrics including body burdens are correlated for TiO2NPs that remained nano-sized in vivo and exhibited marginal physicochemical alterations upon uptake by fish. The result indicates that the traditional mass concentration metric may be used to represent the fish bioaccumulation potential for chemically inert NPs like TiO2.


Assuntos
Nanopartículas , Peixe-Zebra , Animais , Bioacumulação , Peróxido de Hidrogênio , Titânio
11.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771150

RESUMO

The treatment of pancreatic ductal adenocarcinoma (PDAC) remains a huge challenge, because pro-survival signaling pathways-such as the receptor for advanced glycation end products (RAGE)/signal transducer and activator of transcription 3 (STAT3) pathway-are overexpressed in PDAC cells. Moreover, PDAC cells are highly resistant to chemotherapeutic agents because of autophagy induction. Therefore, autophagy and its modulated signaling pathways are attractive targets for developing novel therapeutic strategies for PDAC. Pterostilbene is a stilbenoid chemically related to resveratrol, and has potential for the treatment of cancers. Accordingly, we investigated whether the autophagy inhibitor chloroquine could potentiate the anticancer effect of pterostilbene in the PDAC cell lines MIA PaCa-2 and BxPC-3, as well as in an orthotopic animal model. The results indicated that pterostilbene combined with chloroquine significantly inhibited autophagy, decreased cell viability, and sensitized the cells to pterostilbene-induced apoptosis via downregulation of the RAGE/STAT3 and protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways in PDAC cells. The results of the orthotopic animal model showed that pterostilbene combined with chloroquine significantly inhibited pancreatic cancer growth, delayed tumor quadrupling times, and inhibited autophagy and STAT3 in pancreatic tumors. In summary, the present study suggested the novel therapeutic strategy of pterostilbene combined with chloroquine against the growth of pancreatic ductal adenocarcinoma by inhibiting autophagy and downregulating the RAGE/STAT3 signaling pathways.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Cloroquina/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Estilbenos/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cloroquina/química , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Estilbenos/química
12.
ACS Appl Mater Interfaces ; 13(44): 52295-52307, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34706531

RESUMO

Successful synthesis of glyconanoparticles has attracted much attention due to their various biointeractive capabilities, but it is still a challenge to understand different single-cell responses to exogenous particles among cell populations. Herein, we designed polyaniline-containing galactosylated gold nanoparticles (Au@PGlyco NPs) via in situ polymerization of ortho-nitrophenyl-ß-galactoside assisted by Au nucleation. The nanogold-carrying polyaniline block produced electromagnetic enhancement in surface-enhanced Raman scattering (SERS). The underlying polymerization mechanism of ortho-nitrophenyl compounds via the formation of Au nanoparticles was investigated. Depending on how the galactoside moiety reacted with ß-galactosidase derived from bacteria, the Au@PGlyco NPs-mediated SERS biosensor could detect low amounts of bacteria (∼1 × 102 CFU/mL). In addition, a high accumulation of Au@PGlyco NPs mediated the immune response of tumor-associated M2 macrophages to the immunogenic M1 macrophage transition, which was elicited by reactive oxygen levels biostimulation using single-cell SERS-combined fluorescence imaging. Our study suggested that Au@PGlyco NPs may serve as a biosensing platform with the labeling capacity on galactose-binding receptors expressed cell and immune regulation.

13.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802568

RESUMO

Silver nanoparticles pose a potential risk to ecosystems and living organisms due to their widespread use in various fields and subsequent gradual release into the environment. Only a few studies have investigated the effects of silver nanoparticles (AgNPs) toxicity on immunological functions. Furthermore, these toxic effects have not been fully explored. Recent studies have indicated that zebrafish are considered a good alternative model for testing toxicity and for evaluating immunological toxicity. Therefore, the purpose of this study was to investigate the toxicity effects of AgNPs on innate immunity using a zebrafish model and to investigate whether the natural compound pterostilbene (PTE) could provide protection against AgNPs-induced immunotoxicity. Wild type and neutrophil- and macrophage-transgenic zebrafish lines were used in the experiments. The results indicated that the exposure to AgNPs induced toxic effects including death, malformation and the innate immune toxicity of zebrafish. In addition, AgNPs affect the number and function of neutrophils and macrophages. The expression of immune-related cytokines and chemokines was also affected. Notably, the addition of PTE could activate immune cells and promote their accumulation in injured areas in zebrafish, thereby reducing the damage caused by AgNPs. In conclusion, AgNPs may induce innate immune toxicity and PTE could ameliorate this toxicity.


Assuntos
Imunidade Inata/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Estilbenos/farmacologia , Animais , Ecossistema , Embrião não Mamífero/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
14.
Arch Toxicol ; 95(4): 1141-1159, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33554280

RESUMO

Carbon monoxide (CO) has long been known as a "silent killer" because of its ability to bind hemoglobin (Hb), leading to reduced oxygen carrying capacity of Hb, which is the main cause of CO poisoning (COP) in humans. Emerging studies suggest that mitochondria is a key target of CO action that can impact key biological processes, including apoptosis, cellular proliferation, inflammation, and autophagy. Despite its toxicity at high concentrations, CO also exhibits cyto- and tissue-protective effects at low concentrations in animal models of organ injury and disease. Specifically, CO modulates the production of pro- or anti-inflammatory cytokines and mediators by regulating the NLRP3 inflammasome. Given that human diseases are strongly associated with inflammation, a deep understanding of the exact mechanism is helpful for treatment. Autophagic factors and inflammasomes interact in various situations, including inflammatory disease, and exosomes might function as the bridge between the inflammasome and autophagy activation. Thus, the interplay among autophagy, mitochondrial dysfunction, exosomes, and the inflammasome may play pivotal roles in the health effects of CO. In this review, we summarize the latest research on the beneficial and toxic effects of CO and their underlying mechanisms, focusing on the important role of the inflammasome and its possible crosstalk with autophagy and exosomes. This knowledge may lead to the development of new therapies for inflammation-related diseases and is essential for the development of new therapeutic strategies and biomarkers of COP.


Assuntos
Monóxido de Carbono/toxicidade , Inflamassomos/metabolismo , Inflamação/etiologia , Animais , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Intoxicação por Monóxido de Carbono/fisiopatologia , Citocinas/metabolismo , Exossomos/metabolismo , Humanos , Inflamação/patologia , Mitocôndrias/patologia
15.
Cancers (Basel) ; 13(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546453

RESUMO

Cancer response to chemotherapy is regulated not only by intrinsic sensitivity of cancer cells but also by tumor microenvironment. Tumor hypoxia, a condition of low oxygen level in solid tumors, is known to increase the resistance of cancer cells to chemotherapy. Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to lack of target in TNBC, chemotherapy is the only approved systemic treatment. We evaluated the effect of hypoxia on chemotherapy resistance in TNBC in a series of in vitro and in vivo experiments. Furthermore, we synthesized the calcium peroxide-modified magnetic nanoparticles (CaO2-MNPs) with the function of oxygen generation to improve and enhance the therapeutic efficiency of doxorubicin treatment in the hypoxia microenvironment of TNBC. The results of gene set enrichment analysis (GSEA) software showed that the hypoxia and autophagy gene sets are significantly enriched in TNBC patients. We found that the chemical hypoxia stabilized the expression of hypoxia-inducible factor 1α (HIF-1α) protein and increased doxorubicin resistance in TNBC cells. Moreover, hypoxia inhibited the induction of apoptosis and autophagy by doxorubicin. In addition, CaO2-MNPs promoted ubiquitination and protein degradation of HIF-1α. Furthermore, CaO2-MNPs inhibited autophagy and induced apoptosis in TNBC cells. Our animal studies with an orthotopic mouse model showed that CaO2-MNPs in combination with doxorubicin exhibited a stronger tumor-suppressive effect on TNBC, compared to the doxorubicin treatment alone. Our findings suggest that combined with CaO2-MNPs and doxorubicin attenuates HIF-1α expression to improve the efficiency of chemotherapy in TNBC.

16.
J Dermatol ; 48(3): 344-352, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33458860

RESUMO

SR-T100 gel, containing solamargine extracted from Solanum undatum (synonym: Solanum incanum), had good therapeutic effects on actinic keratosis (AK) in human and ultraviolet B-induced papilloma in mice. This study aimed to investigate the immunohistochemical changes in the human skin after SR-T100 treatment. An immunohistochemical study was performed and the changes in photocarcinogenesis and photoaging markers after 16-week SR-T100 gel treatment were documented. SR-T100 gel treatment for 16 weeks resulted in complete remission in nine AK lesions and partial remission in four AK lesions. SR-T100 gel abolished the expression of mutant p53 and SOX2 and restored the expression of NOTCH1. Additionally, SR-T100 gel improved wrinkling in human skin, while restoring the expression of lamin B1 and increasing synthesis of new elastic fibers. SR-T100 gel had therapeutic effects on photocarcinogenesis and photoaging of photodamaged skin with AK.


Assuntos
Ceratose Actínica , Envelhecimento da Pele , Solanum , Animais , Ceratose Actínica/tratamento farmacológico , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
17.
Front Cell Dev Biol ; 8: 436, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582712

RESUMO

Chronic kidney disease (CKD) is recognized as a global public health problem. NLRP3 inflammasome activation has been characterized to mediate diverse aspect mechanisms of CKD through regulation of proinflammatory cytokines, tubulointerstitial injury, glomerular diseases, renal inflammation, and fibrosis pathways. Autophagy is a characterized negative regulation mechanism in the regulation of the NLRP3 inflammasome, which is now recognized as the key regulator in the pathogenesis of inflammation and fibrosis in CKD. Thus, autophagy is undoubtedly an attractive target for developing new renal protective treatments of kidney disease via its potential effects in regulation of inflammasome. However, there is no clinical useful agent targeting the autophagy pathway for patients with renal diseases. Pterostilbene (PT, trans-3,5-dimethoxy-4-hydroxystilbene) is a natural analog of resveratrol that has various health benefits including autophagy inducing effects. Accordingly, we aim to investigate underlying mechanisms of preventive and therapeutic effects of PT by reducing NLRP3 inflammasome activation and fibrosis through autophagy-inducing effects. The renal protective effects of PT were evaluated by potassium oxonate (PO)-induced hyperuricemia and high adenine diet-induced CKD models. The autophagy induction mechanisms and anti-fibrosis effects of PT by down-regulation of NLRP3 inflammasome are investigated by using immortalized rat kidney proximal tubular epithelial NRK-52E cells. To determine the role of autophagy induction in the alleviating of NLRP3 inflammasome activation and epithelial-mesenchymal transition (EMT), NRK-52E with Atg5 knockdown [NRK-Atg5-(2)] cells were applied in the study. The results indicated that PT significantly reduces serum uric acid levels, liver xanthine oxidase activity, collagen accumulation, macrophage recruitment, and renal fibrosis in CKD models. At the molecular levels, pretreatment with PT downregulating TGF-ß-triggered NLRP3 inflammasome activation, and subsequent EMT in NRK-52E cells. After blockage of autophagy by treatment of Atg5 shRNA, PT loss of its ability to prevent NLRP3 inflammasome activation and EMT. Taken together, we suggested the renal protective effects of PT in urate nephropathy and proved that PT induces autophagy leading to restraining TGF-ß-mediated NLRP3 inflammasome activation and EMT. This study is also the first one to provide a clinical potential application of PT for a better management of CKD through its autophagy inducing effects.

18.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545694

RESUMO

This editorial aims to summarize the 14 scientific papers contributed to the Special Issue "Nanotoxicology and nanosafety 2.0 from the point of view of both toxicology and ecotoxicology".


Assuntos
Nanoestruturas/efeitos adversos , Animais , Ecotoxicologia , Poluição Ambiental , Humanos , Nanoestruturas/toxicidade , Nanotecnologia
19.
Int J Mol Sci ; 21(8)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325940

RESUMO

As the worldwide application of nanomaterials in commercial products increases every year, various nanoparticles from industry might present possible risks to aquatic systems and human health. Presently, there are many unknowns about the toxic effects of nanomaterials, especially because the unique physicochemical properties of nanomaterials affect functional and toxic reactions. In our research, we sought to identify the targets and mechanisms for the deleterious effects of two different sizes (~10 and ~50 nm) of amine-modified silver nanoparticles (AgNPs) in a zebrafish embryo model. Fluorescently labeled AgNPs were taken up into embryos via the chorion. The larger-sized AgNPs (LAS) were distributed throughout developing zebrafish tissues to a greater extent than small-sized AgNPs (SAS), which led to an enlarged chorion pore size. Time-course survivorship revealed dose- and particle size-responsive effects, and consequently triggered abnormal phenotypes. LAS exposure led to lysosomal activity changes and higher number of apoptotic cells distributed among the developmental organs of the zebrafish embryo. Overall, AgNPs of ~50 nm in diameter exhibited different behavior from the ~10-nm-diameter AgNPs. The specific toxic effects caused by these differences in nanoscale particle size may result from the different mechanisms, which remain to be further investigated in a follow-up study.


Assuntos
Aminas , Córion/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Nanopartículas Metálicas , Prata , Aminas/química , Animais , Apoptose , Fenômenos Químicos , Desenvolvimento Embrionário , Lisossomos/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Testes de Toxicidade Aguda , Peixe-Zebra
20.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235610

RESUMO

Nanotechnology has rapidly promoted the development of a new generation of industrial and commercial products; however, it has also raised some concerns about human health and safety. To evaluate the toxicity of the great diversity of nanomaterials (NMs) in the traditional manner, a tremendous number of safety assessments and a very large number of animals would be required. For this reason, it is necessary to consider the use of alternative testing strategies or methods that reduce, refine, or replace (3Rs) the use of animals for assessing the toxicity of NMs. Autophagy is considered an early indicator of NM interactions with cells and has been recently recognized as an important form of cell death in nanoparticle-induced toxicity. Impairment of autophagy is related to the accelerated pathogenesis of diseases. By using mechanism-based high-throughput screening in vitro, we can predict the NMs that may lead to the generation of disease outcomes in vivo. Thus, a tiered testing strategy is suggested that includes a set of standardized assays in relevant human cell lines followed by critical validation studies carried out in animals or whole organism models such as C. elegans (Caenorhabditis elegans), zebrafish (Danio rerio), and Drosophila (Drosophila melanogaster)for improved screening of NM safety. A thorough understanding of the mechanisms by which NMs perturb biological systems, including autophagy induction, is critical for a more comprehensive elucidation of nanotoxicity. A more profound understanding of toxicity mechanisms will also facilitate the development of prevention and intervention policies against adverse outcomes induced by NMs. The development of a tiered testing strategy for NM hazard assessment not only promotes a more widespread adoption of non-rodent or 3R principles but also makes nanotoxicology testing more ethical, relevant, and cost- and time-efficient.


Assuntos
Autofagia , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Animais , Autofagia/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...