Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4009, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740761

RESUMO

Frequency combs, specialized laser sources emitting multiple equidistant frequency lines, have revolutionized science and technology with unprecedented precision and versatility. Recently, integrated frequency combs are emerging as scalable solutions for on-chip photonics. Here, we demonstrate a fully integrated superconducting microcomb that is easy to manufacture, simple to operate, and consumes ultra-low power. Our turnkey apparatus comprises a basic nonlinear superconducting device, a Josephson junction, directly coupled to a superconducting microstrip resonator. We showcase coherent comb generation through self-started mode-locking. Therefore, comb emission is initiated solely by activating a DC bias source, with power consumption as low as tens of picowatts. The resulting comb spectrum resides in the microwave domain and spans multiple octaves. The linewidths of all comb lines can be narrowed down to 1 Hz through a unique coherent injection-locking technique. Our work represents a critical step towards fully integrated microwave photonics and offers the potential for integrated quantum processors.

2.
Phys Chem Chem Phys ; 26(20): 14691-14704, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716569

RESUMO

The properties and applications of ionic liquids (ILs) have been widely investigated when they are confined within nanochannels such as carbon nanotubes (CNTs). The confined ILs exhibit very different properties from their bulk state due to a nanoconfinement effect, which plays an important role in the performances of devices with ILs. In this work, we studied the effect of the charge carried by CNTs on confined ILs inside CNTs using molecular dynamics simulations. In charged CNTs, cations and anions are distributed separately along the radial directions, and the transition of orientations of the cations between parallel and vertical to CNTs occurs by changing the charge state of CNTs. The number of hydrogen bonds (HBs) formed by the confined ILs can be reduced by switching the surface charge of CNTs from positive to negative due to the contact modes between cations and anions as well as the distributions of cations in CNTs. The diffusivities along and vertical to the axial direction of CNTs were found to be non-monotonic owing to the "trade-off" effect from both ion pair interlocking and anchoring ILs on the CNT walls. Additionally, the region-dependent dynamics of ILs were also related to the intermolecular interactions in different regions of CNTs. Furthermore, the vibrational modes of ILs were obviously influenced in highly charged CNTs as determined by calculating the density of vibrational states, which demonstrated the transitions in the structure and interactions. The density distributions changed from single layer to double layers when increasing the pore size of neutral CNTs while the hydrogen bonds exhibited a non-monotonic tendency versus the pore sizes. Our results might help to understand the structure and dynamics of confined ILs as well as aid optimizing the performance of devices with ILs.

3.
Nano Lett ; 24(18): 5453-5459, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38682680

RESUMO

Voltage-controlled oscillators, serving as fundamental components in semiconductor chips, find extensive applications in diverse modules such as phase-locked loops, clock generators, and frequency synthesizers within high-frequency integrated circuits. This study marks the first implementation of superconducting Josephson probe microscopy for near-field microwave detection on multiple voltage-controlled oscillators. Focusing on spectrum tracking, various phenomena, such as stray spectra and frequency drifts, were found under nonsteady operating states. Parasitic electromagnetic fields, originating from power supply lines and frequency divider circuits, were identified as sources of interference between units. The investigation further determined optimal working states by analyzing features of the microwave distributions. Our research not only provides insights into the optimization of circuit design and performance enhancement in oscillators but also emphasizes the significance of nondestructive near-field microwave microscopy as a pivotal tool in characterizing integrated millimeter-wave chips.

4.
PNAS Nexus ; 3(4): pgae135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617585

RESUMO

How to distinguish and quantify past human impacts on vegetation is a significant challenge in paleoecology. Here, we propose a novel method, the error inflection point-discriminant technique. It finds out the inflection points (IPs) of the regression errors of pollen-climate transfer functions using modern pollen spectra from vegetation with different values of the Human Influence Index (HII), which represent the HII threshold values of native/secondary and secondary/artificial vegetation systems. Our results show that the HII value at the native/secondary vegetation IPs is approximately 22 and globally uniform, whereas it varies regionally for the secondary/artificial vegetation IPs. In a case study of the Liangzhu archaeological site in the lower Yangtze River, discriminant functions for pollen spectra from three vegetation types and pollen-climate transfer functions of the native vegetation were established to reconstruct paleovegetation and paleoclimate over the past 6,600 years. Our study demonstrates this method's feasibility for quantitatively distinguishing human impacts on paleovegetation and assessing quantitative paleoclimate reconstructions using pollen data.

5.
Nat Nanotechnol ; 19(8): 1101-1107, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38684808

RESUMO

Ferrotoroidicity-the fourth form of primary ferroic order-breaks both space and time-inversion symmetry. So far, direct observation of ferrotoroidicity in natural materials remains elusive, which impedes the exploration of ferrotoroidic phase transitions. Here we overcome the limitations of natural materials using an artificial nanomagnet system that can be characterized at the constituent level and at different effective temperatures. We design a nanomagnet array as to realize a direct-kagome spin ice. This artificial spin ice exhibits robust toroidal moments and a quasi-degenerate ground state with two distinct low-temperature toroidal phases: ferrotoroidicity and paratoroidicity. Using magnetic force microscopy and Monte Carlo simulation, we demonstrate a phase transition between ferrotoroidicity and paratoroidicity, along with a cross-over to a non-toroidal paramagnetic phase. Our quasi-degenerate artificial spin ice in a direct-kagome structure provides a model system for the investigation of magnetic states and phase transitions that are inaccessible in natural materials.

6.
Nano Lett ; 24(14): 4108-4116, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38536003

RESUMO

Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.

7.
Chem Commun (Camb) ; 59(70): 10516-10519, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37555647

RESUMO

A 30% (w/w) [ImCl][EDA]-based deep eutectic solvent (DES) in water has demonstrated superior gravimetric CO2 uptake with desirable kinetics, lower regeneration enthalpy, and lesser degradation than the industrially popular 30% monoethanolamine (MEA) solution.

8.
ACS Nano ; 17(6): 5871-5879, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926859

RESUMO

Tremendous efforts have been devoted to exploiting synthetic wet adhesives for real-life applications. However, developing low-cost, robust, and multifunctional wet adhesive materials remains a considerable challenge. Herein, a wet adhesive composed of a single-component poly(ionic liquid) (PIL) that enables fast and robust underwater adhesion is reported. The PIL adhesive film possesses excellent stretchability and flexibility, enabling its anchoring on target substrates regardless of deformation and water scouring. Surface force measurements show the PIL can achieve a maximum adhesion of 56.7 mN·m-1 on diverse substrates (both hydrophilic and hydrophobic substrates) in aqueous media, within ∼30 s after being applied. The adhesion mechanisms of the PIL were revealed via the force measurements, and its robust wet adhesive capacity was ascribed to the synergy of different non-covalent interactions, such as of hydrogen bonding, cation-π, electrostatic, and van der Waals interactions. Surprisingly, this PIL adhesive film exhibited impressive underwater sound absorption capacity. The absorption coefficient of a 0.7 mm-thick PIL film to 4-30 kHz sound waves could be as high as 0.80-0.92. This work reports a multifunctional PIL wet adhesive that has promising applications in many areas and provides deep insights into interfacial interaction mechanisms underlying the wet adhesion capability of PILs.

10.
Nat Commun ; 14(1): 263, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650177

RESUMO

The role of N-heterocyclic carbene, a well-known reactive site, in chemical catalysis has long been studied. However, its unique binding and electron-donating properties have barely been explored in other research areas, such as metal capture. Herein, we report the design and preparation of a poly(ionic liquid)-derived porous organic polycarbene adsorbent with superior gold-capturing capability. With carbene sites in the porous network as the "nanotrap", it exhibits an ultrahigh gold recovery capacity of 2.09 g/g. In-depth exploration of a complex metal ion environment in an electronic waste-extraction solution indicates that the polycarbene adsorbent possesses a significant gold recovery efficiency of 99.8%. X-ray photoelectron spectroscopy along with nuclear magnetic resonance spectroscopy reveals that the high performance of the polycarbene adsorbent results from the formation of robust metal-carbene bonds plus the ability to reduce nearby gold ions into nanoparticles. Density functional theory calculations indicate that energetically favourable multinuclear Au binding enhances adsorption as clusters. Life cycle assessment and cost analysis indicate that the synthesis of polycarbene adsorbents has potential for application in industrial-scale productions. These results reveal the potential to apply carbene chemistry to materials science and highlight porous organic polycarbene as a promising new material for precious metal recovery.

11.
J Colloid Interface Sci ; 637: 408-420, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36716665

RESUMO

Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 âˆ¼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.

12.
Chemosphere ; 312(Pt 1): 137220, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372333

RESUMO

The effective control of eutrophication caused by algae blooms is still the focus of global attention. The traditional dissolved air floatation process for algae removal has a low adhesion efficiency between bubbles and algal cells and a low removal efficiency of organic pollutants. Aiming to address these defects, this study set up an ozone microbubble-enhanced air flotation experiment to explore the removal trends of algal cells and algal organic matter (AOM) pollution. In contrast to traditional air flotation, this approach targets the removal of various forms of AOM after algal cell damage. The highest removal rates of algal cells, extracellular microcystin (Mc), intracellular Mc-lr and total Mc-lr were 96.6%, 60.1%, 95.2% and 93.7%, respectively. Compared with the traditional process, the absorption rate and utilization rate of ozone were increased by 41.9% and 46.2%, respectively. The removal effect of AOM was also greatly improved, and ozone microbubbles enhanced the removal of aromatic protein-like substances and high-molecular-weight fulvic acid, humic acid and humic substances. The advantageous synergistic effect of ozone and microbubbles on algae removal was analyzed by exploring the enhanced air flotation removal mechanism of ozone microbubbles' enhanced air floatation removal. Good vacuole adhesion and strong oxidation caused by ozone microbubbles jointly guaranteed a good removal rate of AOM. The enhanced air flotation process with ozone microbubbles has high feasibility and a good effect, can effectively remove algal cells and algal pollutants, and has great potential in algal removal and control of water eutrophication.


Assuntos
Poluentes Ambientais , Ozônio , Purificação da Água , Microbolhas , Eutrofização , Substâncias Húmicas
13.
Environ Sci Technol ; 56(19): 14069-14079, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36126287

RESUMO

Nanofiltration (NF) membranes are playing increasingly crucial roles in addressing emerging environmental challenges by precise separation, yet understanding of the selective transport mechanism is still limited. In this work, the underlying mechanisms governing precise selectivity of the polyamide NF membrane were elucidated using a series of monovalent cations with minor hydrated radius difference. The observed selectivity of a single cation was neither correlated with the hydrated radius nor hydration energy, which could not be explained by the widely accepted NF model or ion dehydration theory. Herein, we employed an Arrhenius approach combined with Monte Carlo simulation to unravel that the transmembrane process of the cation would be dominated by its pairing anion, if the anion has a greater transmembrane energy barrier, due to the constraint of anion-cation coupling transport. Molecular dynamics simulations further revealed that the distinct hydration structure was the primary origin of the energy barrier difference of cations. The cation having a larger incompressible structure after partial dehydration through subnanopores would induce a more significant ion-membrane interaction and consequently a higher energy barrier. Moreover, to validate our proposed mechanisms, a membrane grafting modification toward enlarging the energy barrier difference of dominant ions achieved a 3-fold enhancement in ion separation efficiency. Our work provides insights into the precise separation of ionic species by NF membranes.


Assuntos
Desidratação , Nylons , Ânions/química , Cátions Monovalentes , Humanos , Simulação de Dinâmica Molecular
14.
Phys Rev Lett ; 129(5): 057202, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960577

RESUMO

Artificial spin ices are engineered arrays of dipolarly coupled nanobar magnets. They enable direct investigations of fascinating collective phenomena from their diverse microstates. However, experimental access to ground states in the geometrically frustrated systems has proven difficult, limiting studies and applications of novel properties and functionalities from the low energy states. Here, we introduce a convenient approach to control the competing diploar interactions between the neighboring nanomagnets, allowing us to tailor the vertex degeneracy of the ground states. We achieve this by tuning the length of selected nanobar magnets in the spin ice lattice. We demonstrate the effectiveness of our method by realizing multiple low energy microstates in a kagome artificial spin ice, particularly the hardly accessible long range ordered ground state-the spin crystal state. Our strategy can be directly applied to other artificial spin systems to achieve exotic phases and explore new emergent collective behaviors.

15.
ACS Nano ; 16(7): 10554-10565, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35786866

RESUMO

Poly(ionic liquid)s (PIL) are common precursors for heteroatom-doped carbon materials. Despite a relatively higher carbonization yield, the PIL-to-carbon conversion process faces challenges in preserving morphological and structural motifs on the nanoscale. Assisted by a thin polydopamine coating route and ion exchange, imidazolium-based PIL nanovesicles were successfully applied in morphology-maintaining carbonization to prepare carbon composite nanocapsules. Extending this strategy further to their composites, we demonstrate the synthesis of carbon composite nanocapsules functionalized with iron nitride nanoparticles of an ultrafine, uniform size of 3-5 nm (termed "FexN@C"). Due to its unique nanostructure, the sulfur-loaded FexN@C electrode was tested to efficiently mitigate the notorious shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. The cavity of the carbon nanocapsules was spotted to better the loading content of sulfur. The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electronic conductivity and strong binding power to LiPSs. Benefiting from this well-crafted composite nanostructure, the constructed FexN@C/S cathode demonstrated a fairly high discharge capacity of 1085 mAh g-1 at 0.5 C initially, and a remaining value of 930 mAh g-1 after 200 cycles. In addition, it exhibits an excellent rate capability with a high initial discharge capacity of 889.8 mAh g-1 at 2 C. This facile PIL-to-nanocarbon synthetic approach is applicable for the exquisite design of complex hybrid carbon nanostructures with potential use in electrochemical energy storage and conversion.

16.
ACS Omega ; 7(24): 20791-20799, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755333

RESUMO

We studied the self-assembly of miktoarm star polyelectrolytes with different numbers of arms in solutions with various ionic strengths using coarse-grained molecular dynamic simulations. Spherical micelles are obtained for star polyelectrolytes with fewer arms, whereas wormlike clusters are obtained for star polyelectrolytes with more arms at a low ionic strength environment, with hydrophilic arms showing a stretched conformation. The number of clusters shows an overall decreasing tendency with increasing the number of arms in star polyelectrolytes due to strong electrostatic coupling between polycations and polyanions. The formation of wormlike clusters follows an overall stepwise pathway with an intermittent association-dissociation process for star polyelectrolytes with weak electrostatic coupling. These computational results can provide relevant physical insights to understand the self-assembly mechanism of star polyelectrolytes in solvents with various ionic strengths and to design star polyelectrolytes with functional groups that can fine-tune self-assembled structures for specific applications.

17.
Angew Chem Int Ed Engl ; 61(27): e202205183, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35470952

RESUMO

We report the large-scale synthesis of photoluminescent single-chain nanoparticles (SCNPs) by electrostatic-mediated intramolecular crosslinking in a concentrated solution of 40 mg mL-1 by continuous addition of the free radical initiator. Poly(vinyl benzyl chloride) was charged by quaternization with vinyl-imidazolium for the intramolecular crosslinking by using 2,2-dimethoxy-2-phenylacetophenone (DMAP) as the radical initiator. Under the electrostatic repulsion thus interchain isolation, the intrachain crosslinking experiences the transition from coil through pearl-necklace to globular state. The SCNPs demonstrate strong photoluminescence in the visible range when the non-emissive units are confined thereby. Composition and microstructure of the SCNPs are tunable. The photoluminescent tadpole-like Janus SCNP can be used to selectively illuminate interfacial membranes while stabilizing the emulsions.

18.
Environ Sci Pollut Res Int ; 29(36): 54219-54233, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35292900

RESUMO

As a critical air dissolving system, the performance of air flotation equipment directly determines the adhesion efficiency and pollutant removal efficiency of air flotation processes. The factors affecting the performance of air flotation equipment and the relationships between equipment performance and pollution removal efficiency were studied. The results show that when the dissolved gas pressure was 0.4 MPa and the air intake rate was 24 mL/min, the dissolved gas efficiency of the equipment reached its highest value of 55%, the average particle size of bubbles was maintained at 24 µm, and the dissolved oxygen (DO) content significantly increased. When the dissolved gas pressure was 0.4 MPa, the air intake rate was 24 mL/min, and the coagulant dose was 6 mg/L; the removal rates for turbidity, chlorophyll-a, total organic carbon (TOC), and UV absorbance at 254 nm (UV254) reached 95.76%, 96.41%, 34.21%, and 65.96%, respectively. The degree of pollutant removal was positively correlated with changes to the equipment performance parameters. Microbubbles (MBs) showed good removal of high-molecular weight, strongly hydrophobic organic matter and showed some removal of the trihalomethane formation potential (THMFP) of the water. The removal mechanism mainly depended on the hydrophobic interactions of the MBs with algae and organic matter. The flocs and MBs collided and adhered to form air-entrained flocs. The separation of air-entrained flocs depended on the relationship between the surface load and the rising velocity. The surface load has to be lower than the rising velocity of the minimum air-entrained flocs to ensure good effluent outcomes.


Assuntos
Poluentes Ambientais , Purificação da Água , Clorofila A , Floculação , Microbolhas , Tamanho da Partícula , Purificação da Água/métodos
19.
Chemosphere ; 292: 133419, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34982966

RESUMO

Odor problems are challenging issues in water treatment. Advanced oxidation has a significant degradation effect on these odors; however, some issues, such as oxidant residues and disinfection byproducts, exist in the use of advanced oxidation in actual water treatment. Because of the above issues, a combined advanced oxidation process has emerged-the UV/H2O2 -biological activated carbon (BAC) process can play a strong oxidizing role in advanced oxidation and uses the physical adsorption and biological effects of activated carbon. However, there have been few studies on the odor degradation mechanism and characteristics of activated carbon biofilms in actual water treatment. This paper systematically studied the organic and odor substances removal effects and mechanism of a pilot combined UV/H2O2-BAC process. The results showed that UV/H2O2-BAC technology had a good removal effect on odor substances under long-term stable operation. The concentrations of geosmin (GSM) and 2-methylisoborneol (2-MIB) after systemic treatment were below 5 ng/L. The removal rates of DOC, UV254 and H2O2 by the combined process were 53.60%, 73.08% and 60.20%, respectively. The results of full-scan determination of GSM and 2-MIB degradation by gas chromatography-mass spectrometry (GC-MS) were consistent with those of front-track analysis. The diversity, richness and evenness of microorganisms in the lower activated carbon layer were higher than those in the middle and upper activated carbon layers. The greater the difference in the carbon layer height was, the greater the difference in the biological community structure.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal , Peróxido de Hidrogênio , Odorantes/análise , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 806(Pt 4): 151372, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728210

RESUMO

Monochloramine (NH2Cl) oxidant combined with a Ultraviolet (UV)-Light-emitting-diode (LED) light source forms a new advanced oxidation process (AOP), which can achieve high-efficiency degradation of carbamazepine (CBZ). The degradation of CBZ displayed pseudo-first-order reaction kinetics (R2 > 0.98, kCBZ = 0.0043 cm2 mJ-1 at pH 7). The degradation of CBZ was dependent on UV-LED wavelength, with maximum degradation efficiency observed at 265 nm since it was the lowest wavelength studied among UV-LEDs. Variation in pH across the range, which might be expected under normal environmental conditions (pH 6-8), and the presence of Cl- had no significant effect on the degradation efficiency of CBZ, while the presence of HCO3- and natural organic matter (NOM) inhibited degradation. Electron paramagnetic resonance (EPR) experiments detected OH in the system. Probe compounds were used to distinguish the contribution of reactive chlorine species (RCS). It was proved that OH and Cl played major roles and OH was responsible for around 50% of the observed degradation of CBZ. Eight transformative products (TPs) in the degradation process of CBZ were identified, with a generally decreasing toxicity. The concentration of disinfection by-products (DBPs) formed during CBZ degradation was all within limits of WHO and China standard for drinking water. Although the concentration of nitrogen-containing DBPs (N-DBPs) was the lowest, N-DBPs were the main contributors to toxicity, and these would require more attention in practical applications. UV-LED/NH2Cl AOP was identified as an effective way to degrade pharmaceutically active compounds.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Carbamazepina/toxicidade , Cloraminas , Cloro , Desinfecção , Halogenação , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA